JAN 12, 2020 6:42 AM PST

Changing Two Cellular Pathways Extends Lifespan Significantly

WRITTEN BY: Carmen Leitch

Caenorhabditis elegans is a small worm that is a popular research model; it has many genes in common with humans, there are genetic engineering tools that apply to it, it's easy and inexpensive to raise and develops rapidly. Scientists using this model have now found chemical pathways in this organism's cells that can extend the life of this short-lived worm by five times. If a human lived that much longer, they'd be as many as 500 years old.

C. elegans / Credit:  National Institutes of Health

This work, which was published in Cell Reports, focused on pathways that are also found in humans and have been studied extensively. There are already drugs in development that aim to extend lifespan, and the more we learn about the mechanisms underlying the aging process, the more likely it becomes that a drug to combat aging will be created.

The researchers used worms that had been genetically engineered. The insulin signaling pathway and target of rapamycin (TOR) were altered in the animals and these changes resulted in a 100 percent and 30 percent increase in lifespan, respectively. When both pathways were altered at the same time, lifespan increased by a whopping 500 percent.

"Despite the discovery in C. elegans of cellular pathways that govern aging, it hasn't been clear how these pathways interact," noted Hermann Haller, M.D., president of the MDI Biological Laboratory. "By helping to characterize these interactions, our scientists are paving the way for much-needed therapies to increase healthy lifespan for a rapidly aging population."

"The synergistic extension is really wild," said study author Jarod A. Rollins, Ph.D. "The effect isn't one plus one equals two, it's one plus one equals five. Our findings demonstrate that nothing in nature exists in a vacuum; in order to develop the most effective anti-aging treatments we have to look at longevity networks rather than individual pathways."

An anti-aging treatment might involve a combination therapy that uses different drugs to act in different ways, just like combination therapies that treat cancer or HIV, noted study author Pankaj Kapahi, Ph.D., of the Buck Institute.

These pathways are complex, with many molecular players, and this research may also help explain why no single longevity gene has been found in people that live healthy lives well into old age.

Rollins is featured in the video above discussing the genetic basis of aging in humans.


Sources: Phys.org via Mount Desert Island Biological Laboratory, Cell Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 20, 2020
Cell & Molecular Biology
Researchers Detect a Vulnerability in Viruses
MAY 20, 2020
Researchers Detect a Vulnerability in Viruses
Myriad organisms share this planet, and there is an ongoing evolutionary arms race between competing traits or species, ...
MAY 20, 2020
Cardiology
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
MAY 20, 2020
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
For some, working out just doesn’t pay off. A recent study published in Cardiovascular Research by the H ...
JUN 14, 2020
Genetics & Genomics
Human Eggs Can Choose the Sperm They Prefer
JUN 14, 2020
Human Eggs Can Choose the Sperm They Prefer
While people usually put a lot of effort into finding a partner, recent research suggests that our bodies are choosy in ...
JUL 20, 2020
Genetics & Genomics
A Tiny But Efficient Cas Protein is Discovered in a Bacteriophage
JUL 20, 2020
A Tiny But Efficient Cas Protein is Discovered in a Bacteriophage
The microbes of the world are locked in a struggle for survival and a battle for resources. They compete directly in dif ...
JUL 21, 2020
Cell & Molecular Biology
Researchers ID New Aging Pathways & Potential Ways to Alter Them
JUL 21, 2020
Researchers ID New Aging Pathways & Potential Ways to Alter Them
The length of a person's life can be affected by many factors, but the natural lifespan is dependent on how the cells in ...
JUL 25, 2020
Cell & Molecular Biology
Mammalian Cells May Have Trouble Fighting Space Bugs
JUL 25, 2020
Mammalian Cells May Have Trouble Fighting Space Bugs
New research has suggested that humans and other terrestrial mammals might have trouble identifying and responding to mi ...
Loading Comments...