MAR 02, 2020 9:04 AM PST

Pushing the Limits of Ribosomes

WRITTEN BY: Carmen Leitch

Our cells are full of tiny, specialized machines that carry out many critical and complex functions. The ribosome, for example, is used by cells to generate proteins. Researchers studying synthetic biology have been interested in using ribosomes in the creation of synthetic materials, but it has been challenging to get them to do work that isn't what they normally do. New research reported in Nature Communications can help change that. Scientists have now been able to rapidly generate ribosomes in a tube, and then select the ones that are able to carry out certain functions. The method is called ribosome synthesis and evolution (RISE).

"Ribosomes have an extraordinary capability as the protein synthesis machinery of the cell," said research leader Michael Jewett, the Walter P. Murphy Professor of Chemical and Biological Engineering and director of the Center for Synthetic Biology at Northwestern's McCormick School of Engineering. "But to synthesize proteins beyond those found in nature, we have to design and modify the ribosome to work with non-natural substrates. Developing ribosomes in vitro is an important part of that system, and we are very excited to have this new capability."

Researchers have already turned to the ribosome to help engineer biopharmaceuticals such as insulin, and they could be useful in creating new biopolymers that are not found in nature. There are limitations to the use of the ribosome, however, since it's normal function is inside of living organisms.

Jewett's team repurposed ribosomes by engineering DNA to make mutant ribosomes, to the tune of hundreds of thousands an hour. Magnetic beads then sort through them and find the ones with functions the researchers are interested in. Now, it may be much easier to create biopolymers with certain mutant ribosomes.

"We validated the RISE method by selecting highly active ribosomes that are resistant to the antibiotic clindamycin from a library of variants," Jewett said. "Our hope is that others will be able to use this platform to select for ribosomes that can carry out a new function."

The research team also mapped the ribosome's active site and determined which bases can be altered without disrupting ribosomal function. They found that 85 percent were flexible in some way and can be altered.

"It proves to us that you can change almost every nucleotide in the active site and still get a functional ribosome. This is so exciting for synthetic biology," Jewett added. "Right now, the ribosome is a chef that can only make certain meals. We want to create many chefs that can make many different cuisines. This is a huge step forward toward that vision." Jewett is featured discussing his work in the video.

"This collection of results represents a truly exciting step towards harnessing and adapting the biological cellular machinery to produce non-biological polymers," said Dawanne Poree, polymer chemistry program manager, Army Research Office, an element of US Army Combat Capabilities Development Command's Army Research Office. "If successful, this work will, in essence, bring synthetic materials into the realm of biological functions, and potentially rendering advanced, high-performance materials capable of catalysis, molecular encoding and data storage, nanoelectronics, self-healing, among many other functions."

 

Sources: Phys.org via Northwestern University, Nature Communications

 

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 01, 2022
Cell & Molecular Biology
Gut Microbes that Release Histamine Worsen IBS Pain
AUG 01, 2022
Gut Microbes that Release Histamine Worsen IBS Pain
When the white blood cells in our bodies encounter a pathogen, they can release a molecule called histamine, which can h ...
AUG 25, 2022
Cell & Molecular Biology
A Gut Microbe That Can Help Control Cholesterol Levels
AUG 25, 2022
A Gut Microbe That Can Help Control Cholesterol Levels
Anywhere from 200 to 1,000 species of bacteria reside in the human gut microbiome, and researchers have been trying to d ...
SEP 07, 2022
Cell & Molecular Biology
Sequencing Living Cells, Individually, Without Killing Them
SEP 07, 2022
Sequencing Living Cells, Individually, Without Killing Them
When genes in a cell are active, they are transcribed into messenger RNA (mRNA) molecules. So researchers can take a sna ...
SEP 09, 2022
Immunology
Antibodies are Sometimes Made with 'Stolen' DNA
SEP 09, 2022
Antibodies are Sometimes Made with 'Stolen' DNA
The human immune system must respond to a diverse array of infectious agents and harmful invaders throughout our lifetim ...
SEP 25, 2022
Cell & Molecular Biology
New Imaging Tools Provide Insights Into Cell Stress
SEP 25, 2022
New Imaging Tools Provide Insights Into Cell Stress
In cells, active genes are transcribed into mRNA molecules, which can be edited and processed in a variety of ways, to u ...
SEP 19, 2022
Microbiology
Labroots 2022 Microbiology Virtual Week Poster Winner: Dr. Emmanuel Ogbonna
SEP 19, 2022
Labroots 2022 Microbiology Virtual Week Poster Winner: Dr. Emmanuel Ogbonna
Labroots’ virtual events are a fantastic way to network and learn about the work of other researchers in your fiel ...
Loading Comments...