MAR 26, 2020 2:21 PM PDT

A Large Cavity is Discovered in a Tuberculosis Protein

WRITTEN BY: Carmen Leitch

Scientists have discovered something very unusual about a protein that is thought to be important to the development of tuberculosis. They found a very large interior pocket that seems to be able to move things into the cell of the bacterium that causes the disease. Most molecules that move things through a cell membrane, like a channel, are very specific about what they transport, but this one seems to act in a much more generalized way, and can move small and large molecules, and potentially, antibiotics into the cell. While the research may lead to new avenues in tuberculosis prevention or treatment, the researchers are trying to learn more about the purpose of this protein pocket.

Although it's been tamed in many countries, tuberculosis still kills around a million people a year. Efforts to better understand the bacteria that causes disease have led to the discovery of a strange new feature of a molecule key to its survival. / Credit: Greg Stewart/SLAC National Accelerator Laboratory

"We've never seen anything like this before," said researcher Cornelius Gati, a structural biologist at the Department of Energy's SLAC National Accelerator Laboratory. "It doesn't really make sense." Gait performed the study with collaborators at the University of Groningen, Stockholm University, and the Moscow Institute of Physics and Technology. Their findings were reported in Nature.

Tuberculosis is not a health problem in the United States, but it remains one of the top ten leading causes of death in the world, and is the primary cause of death for people living with HIV.

The bacterium that causes TB, Mycobacterium tuberculosis, is still mysterious. It only causes illness in about one in ten people that it infects, for example, and the reason for that is unknown.

It is known that the bacterium needs to take up vitamin B12 to survive. Gati's team was studying a transporter that had been linked to vitamin B12 shuttling with genetic tools. They used cryo-electron microscopy to learn more about it. "Without this transporter, tuberculosis bacteria cannot survive," Gati said.

Instead of finding a B12 channel, they found a (relatively) huge cavity that's about eight cubic nanometers, which can easily fit several water molecules and perhaps many others including vitamin B12.

"We have seen transporters that move a variety of drugs and molecules out of a cell, with little specificity, but not importers. If this is really an importer that can recognize and import multiple unrelated molecules, that would be fantastic," said Laura Dassama, a chemist at Stanford University and Stanford ChEM-H. It could be a way to get antibiotics into the pathogenic cells.

The researchers have to figure out what can and cannot go into the cavity first, however. They are intrigued and are now trying to find out more about it.

Sources: AAAS/Eurekalert! via DOE/SLAC National Accelerator Laboratory, Nature

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 04, 2022
Cell & Molecular Biology
Massive Gene Transfer From Bacteria to Fly is Discovered
AUG 04, 2022
Massive Gene Transfer From Bacteria to Fly is Discovered
Researchers used new long-read genetic sequencing technology to show that there are bacterial genomes within the genome ...
AUG 09, 2022
Immunology
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
AUG 09, 2022
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
Scientists have been trying to stimulate the immune system to fight cancer for decades, and recent years have brought ma ...
AUG 15, 2022
Cell & Molecular Biology
Researchers Create the First Synthetic Mouse Embryo
AUG 15, 2022
Researchers Create the First Synthetic Mouse Embryo
Scientists have been able to create stem cells that can mimic the early stages of mouse development. The researchers use ...
SEP 01, 2022
Microbiology
Bacteria Help Defend Amoeba in the Microbial Arms Race
SEP 01, 2022
Bacteria Help Defend Amoeba in the Microbial Arms Race
The world is full of microbes, which have been competing with one another for space and resources since they arose. / Im ...
SEP 19, 2022
Clinical & Molecular DX
Could Microplastics Disrupt Cellular Processes in Human Lungs and Livers?
SEP 19, 2022
Could Microplastics Disrupt Cellular Processes in Human Lungs and Livers?
Microplastics are tiny pieces of plastic that are shed from the larger pieces of plastic that we use every day. As plast ...
SEP 26, 2022
Cancer
Clinical Trial Suggests Oncolytic Virus Effective in Combination with Immune Checkpoint Inhibition
SEP 26, 2022
Clinical Trial Suggests Oncolytic Virus Effective in Combination with Immune Checkpoint Inhibition
One type of cancer immunotherapy, called oncolytic viral therapy, works by infecting cancer cells with a specific virus. ...
Loading Comments...