SEP 25, 2015 07:13 PM PDT

The Mitochondria: More Than a Powerhouse

The mitochondria of the cell are unusual organelles that serve as tiny little power plants that provide energy to our cells. They are surrounded by two membranes and even have their own genome. They replicate independently than the cell in which they reside. It is believed that mitochondria were once free-living prokaryotes before becoming major components of eukaryotic cells. The main function of the mitochondria is to perform cellular respiration which means it takes nutrients from the cell, breaks it down, and converts it into energy that the cell can use for various functions. 
 
Controversial "three parent baby" also known as mitochondrial replacement therapy may be more risky than expected.
Until recently, it was believed that the only function of the mitochondria was to produce energy. A new growing body of evidence suggests that the mitochondria may also influence a wide range of other cellular processes including cell death and immunological functions. Mitochondrial DNA has also been linked to neurodegenerative conditions such as cancer and ageing.
 
Earlier this year use of mitochondrial replacement therapy was approved in the United Kingdom. Such therapies would allow a woman with a mitochondrial disorder to give birth to a healthy child by pairing her nuclear DNA with the healthy mitochondria from a donor’s egg. At first the scientific community celebrated this decision, while others warned that the consequences of such therapies are still not known. Scientists have found that the mitochondria may play a significant role in other cellular functions including metabolism, which could have potentially significant effects in the event of mitochondrial replacement.

Researchers have found through experiments using fruit flies that mitochondrial DNA can interact with nuclear DNA which affects a variety of traits including lifespan, reproductive success, rate of development, ageing, growth, movement, morphology and behavior. Similar results were also observed in mice. Due to obvious ethical reasons, these mitochondrial studies have not been performed in humans however; biologists are concerned that mitochondrial replacement therapy may somehow disrupt the communication between the mitochondrial genome and the nuclear genome. It is predicted that these effects may not be dramatic and may not even be seen in children whose mothers had mitochondrial replacement therapy until years after birth.

Some scientists argue that the evidence supporting the risk for mitochondrial replacement therapy stems from studies using highly inbred strains of fruit flies and mice which would increase the genetic differences producing greater effects when mitochondria were mismatched. They argued that these studies would have little implications for effects in the human population. While the scientific community agrees that there may be some risk in use of mitochondrial replacement therapy, it is also agreed that much more research needs to be done. The hope is that female sufferers of mitochondrial disease can have unaffected children. Only time will tell.

Sources: Nature
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
AUG 04, 2018
Videos
AUG 04, 2018
A Radical New Approach to Treating Neurodegeneration
The pathways that neural impulses travel can't be retrieved once they're lost... or can they?...
AUG 09, 2018
Cell & Molecular Biology
AUG 09, 2018
Observing Development at the Cellular Level
A new method can track the formation and movement of lipids, DNA and proteins in live cells....
AUG 25, 2018
Videos
AUG 25, 2018
Engineering Targeted Nanoparticles
The Koch Institute at MIT has chosen one of Jason Chang's images as an Image Award recipient for 2018....
SEP 25, 2018
Cell & Molecular Biology
SEP 25, 2018
Creating Circuits to Detect and React to Conditions in Live Cells
Researchers at Caltech have taken an interesting approach to synthetic biology....
OCT 06, 2018
Videos
OCT 06, 2018
Explore a Human Cell with an Interactive Website
The Allen Institute is aiming to enhance our understanding of how human cells function....
OCT 16, 2018
Genetics & Genomics
OCT 16, 2018
Lab-grown Neurons Help Uncover the Genetic Changes Underlying Mental Illness
Developing therapeutics that will effectively relieve mental illness means understanding what is causing those disorders in the first place....
Loading Comments...