OCT 02, 2015 8:21 PM PDT

A New Approach to Repairing Damage from Alzheimer's Disease

WRITTEN BY: Sarah Hertrich
According to the Alzheimer’s Association, Alzheimer’s disease is described as a type of dementia that causes problems with memory, thinking and behavior. It is the most common form of dementia which is another term for memory loss and a decrease in other intellectual activities. Of all the cases of dementia that occur, approximately 60 – 80 % are due to Alzheimer’s. Alzheimer’s disease is typically associated with old age however; up to 5% of people with the disease have an early onset of symptoms which can occur between age 40 and 50. The disease is progressive with symptoms gradually worsening over a number of years. In late stage Alzheimer’s, those affected are usually unable to carry on a conversation or respond to their environment.

There is currently no cure for Alzheimer’s however; those with the disease can live an average of 8 years after their symptoms become noticeable to others. The range of survival is 4 to 20 years depending on secondary health conditions. There are current treatments that can prevent the disease from progressing which can improve the quality of life of owners and their caregivers. The search for more effective treatments continues. 
Neural stem cells (NSCs) help reverse damage caused to brain cells, are repressed during progression of Alzheimer's.

Researchers from the University of Montreal in Canada have discovered a new mechanism by which cells within the brain can be repaired in order to help treat Alzheimer’s. The study, published this month in Cell Stem Cell, discusses the potential role of neural stem cells (NSCs) in helping reverse damage caused by Alzheimer's. NSCs are involved in learning, memory, mood, stress and regulation. When inhibition of NSC activity occurs, there is a decrease in these functions. When there is damage to brain cells, NSCs travel to these areas where they are involved in wound healing and cell replacement. One hypothesis is that these cells can serve as a target for therapeutic manipulations to heal brain damage that results from Alzheimer’s.

In this study, authors observed suppression of NSC activity in a mouse animal model of Alzheimer's. They also observed that excessive levels of oleic acid (fatty acid) synthesis at the surface of brain cells results in cell deterioration associated with Alzheimer's. Excessive fatty acid synthesis accompanied by repressed NSC activity explains why the brain’s stem cell system does not mount a protective or regenerative response during progression of Alzheimer's. While this research only scratches the surfaces regarding the role of fatty acid metabolism in Alzheimer’s disease, there is a great deal of promise for future development of new approaches to prevent disease progression and improve NSC activity.
 
Sources: Cell Stem Cell; Alzheimer’s Association
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
MAY 31, 2020
Cell & Molecular Biology
Using Nanomachines to Track the Physics of a Cell's Trajectory
MAY 31, 2020
Using Nanomachines to Track the Physics of a Cell's Trajectory
Cells are full of a huge variety of structures and molecules that all work together, but many techniques will only allow ...
JUN 15, 2020
Genetics & Genomics
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
JUN 15, 2020
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder, in which the immune system attacks an insulating sheath that coats ne ...
JUN 15, 2020
Immunology
Experimental MS Treatment Relies on "Retraining" the Immune System
JUN 15, 2020
Experimental MS Treatment Relies on "Retraining" the Immune System
When the immune system goes awry and fails to regulate itself, immune cells may attack the body’s own tissues. Sci ...
JUL 08, 2020
Immunology
Scientists Use Genetics to Control Regulatory T Cells
JUL 08, 2020
Scientists Use Genetics to Control Regulatory T Cells
The ability to control regulatory T cells of the immune system has long been sought out by scientists, especially those ...
JUL 14, 2020
Coronavirus
What Makes A Strong Antibody Response to Coronavirus
JUL 14, 2020
What Makes A Strong Antibody Response to Coronavirus
Scientists all over the world are racing to develop a vaccine that effectively and safely prompts protective immunity to ...
JUL 21, 2020
Genetics & Genomics
In a First, DNA Quadruple Helix Observed in Live Human Cells
JUL 21, 2020
In a First, DNA Quadruple Helix Observed in Live Human Cells
If you've seen a representation of a DNA molecule, you've seen the double helix, in which two strands of genetic materia ...
Loading Comments...