OCT 02, 2015 8:21 PM PDT

A New Approach to Repairing Damage from Alzheimer's Disease

WRITTEN BY: Sarah Hertrich
According to the Alzheimer’s Association, Alzheimer’s disease is described as a type of dementia that causes problems with memory, thinking and behavior. It is the most common form of dementia which is another term for memory loss and a decrease in other intellectual activities. Of all the cases of dementia that occur, approximately 60 – 80 % are due to Alzheimer’s. Alzheimer’s disease is typically associated with old age however; up to 5% of people with the disease have an early onset of symptoms which can occur between age 40 and 50. The disease is progressive with symptoms gradually worsening over a number of years. In late stage Alzheimer’s, those affected are usually unable to carry on a conversation or respond to their environment.

There is currently no cure for Alzheimer’s however; those with the disease can live an average of 8 years after their symptoms become noticeable to others. The range of survival is 4 to 20 years depending on secondary health conditions. There are current treatments that can prevent the disease from progressing which can improve the quality of life of owners and their caregivers. The search for more effective treatments continues. 
Neural stem cells (NSCs) help reverse damage caused to brain cells, are repressed during progression of Alzheimer's.

Researchers from the University of Montreal in Canada have discovered a new mechanism by which cells within the brain can be repaired in order to help treat Alzheimer’s. The study, published this month in Cell Stem Cell, discusses the potential role of neural stem cells (NSCs) in helping reverse damage caused by Alzheimer's. NSCs are involved in learning, memory, mood, stress and regulation. When inhibition of NSC activity occurs, there is a decrease in these functions. When there is damage to brain cells, NSCs travel to these areas where they are involved in wound healing and cell replacement. One hypothesis is that these cells can serve as a target for therapeutic manipulations to heal brain damage that results from Alzheimer’s.

In this study, authors observed suppression of NSC activity in a mouse animal model of Alzheimer's. They also observed that excessive levels of oleic acid (fatty acid) synthesis at the surface of brain cells results in cell deterioration associated with Alzheimer's. Excessive fatty acid synthesis accompanied by repressed NSC activity explains why the brain’s stem cell system does not mount a protective or regenerative response during progression of Alzheimer's. While this research only scratches the surfaces regarding the role of fatty acid metabolism in Alzheimer’s disease, there is a great deal of promise for future development of new approaches to prevent disease progression and improve NSC activity.
 
Sources: Cell Stem Cell; Alzheimer’s Association
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
OCT 11, 2021
Microbiology
Small RNAs are Influential in Bacteria, Including Pathogens Like V. Cholerae
OCT 11, 2021
Small RNAs are Influential in Bacteria, Including Pathogens Like V. Cholerae
Like other organisms, bacteria have to take nutrients up from the environment and use them in various metabolic processe ...
OCT 25, 2021
Microbiology
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
OCT 25, 2021
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
Microbes are engaged in a never-ending battle, and they have ways of attacking each other as well as defense mechanisms.
NOV 05, 2021
Genetics & Genomics
Solution to a Pigeon Genetic Mystery Provides Insight Into Development
NOV 05, 2021
Solution to a Pigeon Genetic Mystery Provides Insight Into Development
This photo by Sydney Stringham shows the domestic pigeons that were bred by the researchers for this research.
NOV 07, 2021
Cell & Molecular Biology
How Cells Use Messengers to Signal to One Another
NOV 07, 2021
How Cells Use Messengers to Signal to One Another
In recent years, researchers have discovered the importance of a kind of antenna that is found on most cells, a structur ...
NOV 25, 2021
Microbiology
How Microbes Use Copper to Make an Antibiotic
NOV 25, 2021
How Microbes Use Copper to Make an Antibiotic
Copper is known to have antibacterial properties, and though it's an important chemical for many organisms, it can b ...
NOV 28, 2021
Cell & Molecular Biology
Scientists Gain Insight Into How Bacteria Become Resistant to Drugs
NOV 28, 2021
Scientists Gain Insight Into How Bacteria Become Resistant to Drugs
Bacteria can swap genetic material with one another easily; one way they do it is a process called bacterial conjugation ...
Loading Comments...