OCT 02, 2015 8:21 PM PDT

A New Approach to Repairing Damage from Alzheimer's Disease

WRITTEN BY: Sarah Hertrich
According to the Alzheimer’s Association, Alzheimer’s disease is described as a type of dementia that causes problems with memory, thinking and behavior. It is the most common form of dementia which is another term for memory loss and a decrease in other intellectual activities. Of all the cases of dementia that occur, approximately 60 – 80 % are due to Alzheimer’s. Alzheimer’s disease is typically associated with old age however; up to 5% of people with the disease have an early onset of symptoms which can occur between age 40 and 50. The disease is progressive with symptoms gradually worsening over a number of years. In late stage Alzheimer’s, those affected are usually unable to carry on a conversation or respond to their environment.

There is currently no cure for Alzheimer’s however; those with the disease can live an average of 8 years after their symptoms become noticeable to others. The range of survival is 4 to 20 years depending on secondary health conditions. There are current treatments that can prevent the disease from progressing which can improve the quality of life of owners and their caregivers. The search for more effective treatments continues. 
Neural stem cells (NSCs) help reverse damage caused to brain cells, are repressed during progression of Alzheimer's.

Researchers from the University of Montreal in Canada have discovered a new mechanism by which cells within the brain can be repaired in order to help treat Alzheimer’s. The study, published this month in Cell Stem Cell, discusses the potential role of neural stem cells (NSCs) in helping reverse damage caused by Alzheimer's. NSCs are involved in learning, memory, mood, stress and regulation. When inhibition of NSC activity occurs, there is a decrease in these functions. When there is damage to brain cells, NSCs travel to these areas where they are involved in wound healing and cell replacement. One hypothesis is that these cells can serve as a target for therapeutic manipulations to heal brain damage that results from Alzheimer’s.

In this study, authors observed suppression of NSC activity in a mouse animal model of Alzheimer's. They also observed that excessive levels of oleic acid (fatty acid) synthesis at the surface of brain cells results in cell deterioration associated with Alzheimer's. Excessive fatty acid synthesis accompanied by repressed NSC activity explains why the brain’s stem cell system does not mount a protective or regenerative response during progression of Alzheimer's. While this research only scratches the surfaces regarding the role of fatty acid metabolism in Alzheimer’s disease, there is a great deal of promise for future development of new approaches to prevent disease progression and improve NSC activity.
 
Sources: Cell Stem Cell; Alzheimer’s Association
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
SEP 07, 2020
Cell & Molecular Biology
With Nanopores, Small Samples Detect Diseases
SEP 07, 2020
With Nanopores, Small Samples Detect Diseases
If you've ever been through a battery of tests while doctors try to find a diagnosis for an ailment, you know that many ...
SEP 09, 2020
Cell & Molecular Biology
Why Liver Gene Therapies Have Not Worked & How to Improve Them
SEP 09, 2020
Why Liver Gene Therapies Have Not Worked & How to Improve Them
Diseases that are caused by errors in a gene might be cured if we could correct those errors, or genetic mutations.
OCT 01, 2020
Cancer
Understanding in vivo Metabolomics: C13 Isotope Studies
OCT 01, 2020
Understanding in vivo Metabolomics: C13 Isotope Studies
One key to understanding cancer metabolomics lies in the ability to accurately replicate the natural environment of the ...
OCT 08, 2020
Immunology
Immuno Metabolic Complexity and Modulating Metabolites
OCT 08, 2020
Immuno Metabolic Complexity and Modulating Metabolites
Immunometabolism is a relatively new subspecialty of immunology as we’ve begun to unravel the complex metabolic re ...
OCT 13, 2020
Clinical & Molecular DX
Test for Diabetes Checks If the Liver Is Responding
OCT 13, 2020
Test for Diabetes Checks If the Liver Is Responding
Glucagon is a hormone that prevents blood glucose levels from dropping too low by stimulating the liver to convert store ...
NOV 09, 2020
Cell & Molecular Biology
The Science Behind Wine Fraud Prevention
NOV 09, 2020
The Science Behind Wine Fraud Prevention
Wine comes in a wide range of flavors and prices. Wine fraud, in which cheaply produced wine is passed off as the expens ...
Loading Comments...