OCT 02, 2015 07:08 PM PDT

New Antibiotic Targets Riboswitch

WRITTEN BY: Kerry Evans
A research team at Merck (accidentally) uncovered a new antibacterial target - a riboswitch important for riboflavin (vitamin B2) biosynthesis.  The team screened nearly 60,000 small molecules for antibacterial activity and found one that suppressed bacterial growth by binding directly to the riboswitch.
  
Structure of a typical riboswitch
A riboswitch is a segment of messenger RNA (mRNA) that typically interacts with an effector molecule to regulate translation of the mRNA.  Riboswitches contain two functional parts, the aptamer, which interacts with the effector molecule, and the expression platform, which directly regulates gene expression.  Many riboswitches regulate the production of metabolites such as riboflavin, glutamine, glycine, and lysine.  The riboflavin riboswitch binds flavin mononucleotide, which is synthesized from riboflavin, to downregulate the riboflavin synthesis pathway.  

The Merck team, led by John Howe, set out to find a drug that would kill bacteria by blocking riboflavin synthesis.  This pathway is unique to bacteria, so there would be no off-target effects on humans.  To find their drug, they screened nearly 60,000 small molecules for the ability to kill E. coli in the absence of riboflavin.  According to Howe, “if the effect of that antibacterial was suppressed by riboflavin … then we had a good chance that the small molecule … was targeting the riboflavin pathway”.

The group confirmed that ribocil effectively killed E. coli cells in culture, then tested its activity in a mouse model.  After altering its structure to increase its activity, they showed that ribocil decreased the bacterial load in mice.  

One (relatively significant) shortcoming is that ribocil was only effective at killing a weakened strain of E. coli.  Wild type cells were able to expel the drug, making them resistant.  Despite this drawback, however, the Merck team has shown that riboswitches are viable antibiotic targets.

Sources: Nature, The Scientist, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 20, 2019
Chemistry & Physics
OCT 20, 2019
Competition of Different Photosynthesis Mechanisms might Have Slowed Down Oxygenation of the Prehistoric Earth
Long before Earth became a hotbed for a diversity of life forms, its atmosphere had almost no oxygen. Thanks to the emergence of photosynthesis inside prim...
OCT 20, 2019
Microbiology
OCT 20, 2019
Specific Gut Microbes Slow ALS Progression in a Mouse Model
We've come a long way in the five years since the ice bucket challenge drew attention to amyotrophic lateral sclerosis (ALS)....
OCT 20, 2019
Immunology
OCT 20, 2019
How to Kill Superbugs
https://www.technologynetworks.com/immunology/news/enhancing-the-infection-fighting-potential-of-natural-products-321553...
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
Gut Microbes can Significantly Impact Host Gene Expression
We all carry a vast number of microbes with us, and the microbial community in the gut is closely linked to our health and well-being....
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
A More Precise Version of CRISPR/Cas9 is Created
A more accurate version of Cas9 has been created, reducing the number of off-target effects. It may be better suited for use in gene therapy....
Loading Comments...