JUN 22, 2020 6:19 AM PDT

Viruses Can Create New Genes By Stealing Bits of Human DNA

WRITTEN BY: Carmen Leitch

When viruses infect cells, they hijack the machinery inside and start to use it for their own purposes. This enables viruses to generate more viral particles that can exit the cell and spread the virus to even more cells. Scientists have now found that when some viruses, including pathogens like influenza, get inside of cells, they can also snatch pieces of the host cell genome, and use this genetic material to enhance its own genome and create new proteins. The findings have been reported by an international team of researchers in Cell.

A digitally colorized TEM image depicting a small grouping of H1N1 influenza virus particles. / Credit: National Institute of Allergy and Infectious Diseases (NIAID)

Viruses are often classified by the type of genome they carry (as explained in the video below). This work focused on segmented negative-strand RNA viruses (sNSVs), which include viruses that cause influenza and Lassa fever. The study showed that they are capable of stealing DNA and creating many different kinds of proteins, which were hybrids of viral and human sequences, which the scientists called UFOs (Upstream Frankenstein Open reading frames). The proteins they generate could be affecting infection and could be useful in the design of vaccines.

"The capacity of a pathogen to overcome host barriers and establish infection is based on the expression of pathogen-derived proteins," said the corresponding study author Ivan Marazzi, Ph.D., Associate Professor of Microbiology at Icahn School of Medicine. "To understand how a pathogen antagonizes the host and establishes infection, we need to have a clear understanding of what proteins a pathogen encodes, how they function, and the manner in which they contribute to virulence."

When viruses manipulate a host cell's machinery to create viral proteins, they use a process called 'cap-snatching,' which cuts off the end of a piece of host mRNA (molecules that represent the protein-coding sequence of a gene) and then extends it with viral gene sequence, creating a gene hybrid.

"For decades we thought that by the time the body encounters the signal to start translating that message into protein (a 'start codon') it is reading a message provided to it solely by the virus. Our work shows that the host sequence is not silent," explained Dr. Marazzi.

The hybrid genes made by sNSVs can initiate the translation of the protein from mRNA at a new site, which is called 'start-snatching.' This can create totally new proteins, which can be expressed by influenza viruses and maybe many others as well. These proteins may not attract the attention of the immune system, and they may influence the severity of an infection. More work will be needed to understand their impact.

"Viruses take over their host at the molecular level, and this work identifies a new way in which some viruses can wring every last bit of potential out of the molecular machinery they are exploiting. While the work done here focusses on influenza viruses, it implies that a huge number of viral species can make previously unsuspected genes," noted the corresponding study author Ed Hutchinson, Ph.D., a research fellow at MRC-University of Glasgow Centre for Virus Research.

Discovering these novel proteins was only the first step. "Now we know they exist, we can study them and use the knowledge to help disease eradication," said Dr. Marazzi. "A large global effort is required to stop viral epidemics and pandemics, and these new insights may lead to identifying novel ways to stop infection."

Sources: AAAS/Eurekalert! Via The Mount Sinai Hospital/ Mount Sinai School of Medicine, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 13, 2021
Cell & Molecular Biology
The DNA Content of a Cell Helps Control Its Size
JUN 13, 2021
The DNA Content of a Cell Helps Control Its Size
Cells have to maintain the right size; bacterial and eukaryotic cells tend to have a characteristic size, but that may a ...
JUL 06, 2021
Cell & Molecular Biology
Can Some Brain Plasticity Be Restored with Ketamine or Light?
JUL 06, 2021
Can Some Brain Plasticity Be Restored with Ketamine or Light?
The perineuronal net is known to play a crucial role in memory. This structure surrounds certain neurons, encasing their ...
JUL 19, 2021
Microbiology
Engineering a Virus Trap
JUL 19, 2021
Engineering a Virus Trap
Viral infections are difficult to treat - antibiotics only work against bacteria - and there are few effective antibodie ...
AUG 01, 2021
Microbiology
Some Insects Can Fight Off Parasites with Genes From a Virus
AUG 01, 2021
Some Insects Can Fight Off Parasites with Genes From a Virus
The genetic action in this 'evolutionary arms races' involves gene swapping and three organisms.
AUG 01, 2021
Drug Discovery & Development
New Compound Halts Neurodegeneration in Alzheimer's
AUG 01, 2021
New Compound Halts Neurodegeneration in Alzheimer's
Chemists have synthesized new compounds that can halt neurodegeneration linked to Alzheimer’s and other neurologic ...
AUG 02, 2021
Microbiology
The Unique Microbiomes of Long-Lived People
AUG 02, 2021
The Unique Microbiomes of Long-Lived People
What's the secret of people that live a long life? The answer may be complex but for some, it could include the microbio ...
Loading Comments...