JUN 25, 2020 7:53 PM PDT

Peptide Made by Marine Worms Can Destroy Multidrug-Resistant Bacteria

WRITTEN BY: Carmen Leitch

Drug-resistant bacteria pose a serious threat to public health, and scientists have been searching for new antibiotics to help confront that issue. Antimicrobials can be found in interesting places, including bacteria and fungi. Researchers have now identified a compound made by an animal called a sandworm that can destroy bacteria that are resistant to the effects of multiple antibiotics. The study, which was funded by a Danish biotechnology company called Adenium Biotech, has been reported in Nature Communications.

“Adenium Biotech asked for our help to investigate a small peptide called arenicin-3 that they found in the marine sandworm Arenicola marina, which could kill Gram-negative bacteria — including strains resistant to last-resort antibiotics,” Dr. Alysha Elliott of The Institute for Molecular Bioscience at the University of Queensland.

Bacteria can be generally classified by the biochemical properties of the membrane that encloses their cellular contents. If there is no outer lipid membrane, but a thick peptidoglycan layer is present, a microbe is said to be Gram-positive. The peptidoglycan layer of Gram-negative bacteria is thin, and an outer lipid membrane is also present. Many pathogens are gram-negative, and Elliott noted that the extra defensive layer makes them tougher to kill.

“Gram-negative bacteria have evolved to outsmart our current antibiotics, but natural antibiotics like the one found in the sandworm can penetrate the cell membrane of bacteria.”

In this study, the researchers tested various compounds generated by the sandworm, including one called arenicin-3, against bacterial cells and human cells.

“While many of the initial compounds were remarkably active in killing the bacteria, they were toxic to human cells including red blood cells and did not work well in the presence of lung surfactant,” said Dr. Johnny Huang of the University of Queensland. “This would be an issue if we wanted to treat bacterial pneumonia where the infection is found in the lung.”

The scientists altered the structure of the molecule until they created a drug called AA139. It was then able to destroy multi-drug resistant bacteria is disease models with few side effects.

“Our next challenge is to get this peptide to where the infections are found. Many bacterial infections are deep-seated, requiring penetration through tissue to reach them. This is a tough challenge for a peptide antibiotic, although there remains a dire unmet medical need for new antibiotics,” Elliott explained.


Sources: University of Queensland, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 04, 2021
Cell & Molecular Biology
Even When They're Outside the Brain, Infections Worsen Alzheimer's
JUN 04, 2021
Even When They're Outside the Brain, Infections Worsen Alzheimer's
It's thought that inflammation is closely connected to cognitive decline, and neuroinflammation plays a role role in the ...
JUN 14, 2021
Cell & Molecular Biology
Can An Omega-3 Fatty Acid Destroy Tumors?
JUN 14, 2021
Can An Omega-3 Fatty Acid Destroy Tumors?
The body needs fatty acts for a variety of functions, and the health benefits of taking fatty acid supplements have long ...
JUL 04, 2021
Genetics & Genomics
New Insights Into the Mechanisms of Rett Syndrome
JUL 04, 2021
New Insights Into the Mechanisms of Rett Syndrome
Rett syndrome is a neurological disorder that mostly affects girls; affected individuals develop normally until they're ...
JUL 11, 2021
Cell & Molecular Biology
A Taste for Sugar is Discovered in Songbirds
JUL 11, 2021
A Taste for Sugar is Discovered in Songbirds
It's been thought that songbirds are unable to taste sugar. Songbirds lack a protein that's crucial for many animals inc ...
JUL 11, 2021
Drug Discovery & Development
Antibiotic Resistance May Be Passed Between Dogs and Owners
JUL 11, 2021
Antibiotic Resistance May Be Passed Between Dogs and Owners
Household pets may act as a reservoir for mcr-1, a gene that is resistant to a last-resort antibiotic, colistin. The fin ...
JUL 13, 2021
Microbiology
Expanding Viral Populations May be More Adaptable Than We Knew
JUL 13, 2021
Expanding Viral Populations May be More Adaptable Than We Knew
In nature, growing populations from bacterial colonies to humans tend to expand. In pulled expansions, the individuals a ...
Loading Comments...