JUL 03, 2020 1:59 PM PDT

A Gut Pathogen Moves With Help From Its Environment

WRITTEN BY: Carmen Leitch

Campylobacter jejuni is a foodborne bacterial pathogen that causes millions of cases of food poisoning each year. To do so, it has to migrate through the gastrointestinal system. C. jejuni can easily swim rapidly through sticky liquids like those that are found in the gut. The shape and structure of the microbes help them move more rapidly through these types of environments than they do through to thin liquids such as water. Understanding how they do it may enable researchers to stop them.

Reporting in PLOS Pathogens, scientists captured C. jejuni as it moved to learn more. They determined how the microbes use their two flagella, two filaments that protrude from each end of their cell bodies.

"It seemed very strange that the bacteria had a tail at both ends - it's like having two opposing motors at either end of a ship. It was only when we watched the bacteria in action that we could see how the two tails work cleverly together to help the bacteria move through the body," explained the co-first author of the study Dr. Eli Cohen of the Department of Life Sciences at Imperial College London.

After engineering C. jejuni to have fluorescent flagella, high-speed microscopy showed that as the microbes move forward, the leading flagella wraps around their body (which is shaped like a helix). Both flagella on C. jejuni then point the same direction, unifying their forward thrust. The wrapped flagella also maneuvered when the microbe needed to change directions, enabling it to quickly get out of tight spaces.

C. Jejuni cell bodies (red) and flagella (green) / Credit: Eli Cohen / Imperial College London

The microbe could wrap its flagella in viscous liquids more easily because the stickiness of the environment helped push it backward and around the body. The microbe didn't wrap its flagella in thin liquids. The helical shape of the microbe is also critical for the flagella to be able to wrap around the microbe.

"Our study kills two birds with one stone: in setting out to understand how C. jejuni moves, we resolved the apparent paradoxes of how it swims in one direction with opposing flagella and how it swims faster in more viscous liquid," said lead study researcher Dr. Morgan Beeby of the Department of Life Sciences at Imperial. "As well as solving some long-standing mysteries, the research could also help researchers find [a] new way to prevent infection by C. jejuni, by targeting any of its interconnected structures that help it move around."

Sources: AAAS/Eurekalert! via Imperial College London, PLOS Pathogens

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 07, 2021
Cell & Molecular Biology
Overcoming Challenges to Detect Apoptosis in 3D Cell Structures
JUN 07, 2021
Overcoming Challenges to Detect Apoptosis in 3D Cell Structures
Researchers are increasingly relying on cells grown in three-dimensional (3D) structures to help answer their research q ...
JUN 11, 2021
Cell & Molecular Biology
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
JUN 11, 2021
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
The immune system can detect and destroy pathogenic and cancerous cells, but sometimes those dangerous cells can evade t ...
JUN 14, 2021
Coronavirus
COVID-19 May Cause Diabetes
JUN 14, 2021
COVID-19 May Cause Diabetes
Reporting in Cell Metabolism, an international team of researchers has suggested that COVID-19 has caused diabetes in so ...
JUL 05, 2021
Neuroscience
Immature Astrocytes Promote High Levels of Neuroplasticity
JUL 05, 2021
Immature Astrocytes Promote High Levels of Neuroplasticity
Researchers from France have found that astrocytes do more than support neurons in the central nervous system. They foun ...
JUL 11, 2021
Drug Discovery & Development
Could Mucus-Based Drugs Replace Antibiotics?
JUL 11, 2021
Could Mucus-Based Drugs Replace Antibiotics?
Researchers from the Copenhagen Center for Glycomics in Denmark have developed a way to produce healthy mucus artificial ...
JUL 25, 2021
Cell & Molecular Biology
Fungal Pathogens Can Grow on Microplastics
JUL 25, 2021
Fungal Pathogens Can Grow on Microplastics
Microplastics are being found throughout our world; they're in the oceans, in soil, and in our bodies, among other place ...
Loading Comments...