OCT 13, 2020 5:03 PM PDT

A Small Part of the Brain May Transmit Inflammation From Mom to Fetus

WRITTEN BY: Carmen Leitch

There is still a lot we don’t know about the brain, and especially about two small bits of tissue deep within it called the choroid plexus. This structure is very difficult to observe because of its location, but it plays a crucial role in physiology by producing the cerebrospinal fluid (CSF) that holds the brain and spinal cord. New studies reported in Developmental Cell and in Neuron have found that the choroid plexus also has immune system-related functions. This immunological activity may play an important part in protecting the brain. It may also be involved in neurodevelopmental disorders like autism when it goes awry.

Immune cells (in green) on the mouse choroid plexus, with blood vessels in red. / Credit: Shipley et al., Neuron 2020, https://doi.org/10.1016/j.neuron.2020.08.024

"There is a correlation between maternal illness during pregnancy and autism, and we wanted to investigate how this is happening," said the senior author of both reports Maria Lehtinen, Ph.D., a neurobiologist at Boston Children's Hospital. "It's a very challenging process to study in the lab."

The Lehtinen laboratory studies the choroid plexus, and they have shown it to be involved in the regulation of brain development. The choroid plexus sends signals to the CSF, and the blood-brain barrier established by the CSF keeps the brain protected from infection and stress.

The researchers used a mouse model to create a kind of skylight in the brain so they could observe the choroid plexus. They used two-photon imaging to see the choroid plexus in 3D in real-time, and traced the movement of immune cells, changes in calcium levels and secreted molecules.

The team was able to see how changes in maternal inflammation disrupted brain development. During maternal infection or environmental stress, the choroid plexus can be a conduit for inflammation. In one study, the researchers used an inflammatory molecule called a cytokine to mimic maternal inflammation. "We wanted to see how the maternal immune response is propagated into the brain, and how the choroid plexus responds to external insults during early development," explained study author Jin Cui, Ph.D.

The induced inflammation caused immune cells called macrophages to move toward the choroid plexus in the embryo, and start to surveil the choroid plexus.

The arrowheads show immune cells (red, macrophages; green, leukocytes) gathered at "hotspots" in the choroid plexus, from which they appear to enter the cerebrospinal fluid. / Credit: Jin Cui, PhD, Boston Children's Hospital

"The embryonic brain is very small, so it's hard to get good resolution, but we could see macrophages moving and extending little arms as if sampling their environment," noted Lehtinen. "This has never been captured before."

The investigators also saw that inflammatory signals like CCL2 increased in the CSF of the embryo, signals that might have been generated by the choroid plexus.

"Many of these markers, including CCL2, are also upregulated in autism patients," said Cui.

Additional studies showed that CCL2 is all that’s required to recruit activated immune cells to the choroid plexus.

"We have added evidence that the inflammatory response perturbs the development of the brain," says Cui. "Previous studies from others have shown that maternal inflammation causes brain malformations in mouse models very early in life, and similar malformations can be seen in some autism patients."

More work will be needed before we know whether autism and the choroid plexus are directly linked, but the researchers did see patches of disorganization in the mouse brains.

"The goal would be to see if preventing the breaching of the choroid plexus barrier could slow or prevent the progression of disease in the brain," said Lehtinen. "That will involve collaborating with many different groups in multiple fields, as well as further advances in imaging technology that are currently underway."

Sources: AAAS/Eurekalert! Via Boston Children’s Hospital, Neuron, Developmental Cell

 

 

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 11, 2021
Genetics & Genomics
Was This Medieval Warrior Non-Binary?
AUG 11, 2021
Was This Medieval Warrior Non-Binary?
Scientists have now learned more about a burial site unearthed at Suontaka in Finland in 1968 that contained two swords, ...
AUG 13, 2021
Genetics & Genomics
Understanding Why a Skull Suture May Close Too Soon
AUG 13, 2021
Understanding Why a Skull Suture May Close Too Soon
There are 22 bones that compose the human skull. These bones are like plates that join together at flexible joints calle ...
AUG 22, 2021
Cell & Molecular Biology
Time-Restricted Eating Can Benefit Different Ages and Sexes
AUG 22, 2021
Time-Restricted Eating Can Benefit Different Ages and Sexes
Some research has indicated that by restricting eating in various ways, lifespan could be extended. Time-restricted eati ...
SEP 09, 2021
Genetics & Genomics
DNA in the Nucleus Observed In a Surprising Formation
SEP 09, 2021
DNA in the Nucleus Observed In a Surprising Formation
In diagrams of cells, DNA is usually shown as a mass in the cell's nucleus, like a bowl of ramen noodles. But researcher ...
SEP 21, 2021
Genetics & Genomics
Skin Condition Linked to Sex Hormone Gene
SEP 21, 2021
Skin Condition Linked to Sex Hormone Gene
Eczema is a chronic, dry skin condition that affects millions of people. A form of the disorder called atopic dermatitis ...
SEP 24, 2021
Genetics & Genomics
Kleefstra Syndrome Reversed in Mouse Model After Birth
SEP 24, 2021
Kleefstra Syndrome Reversed in Mouse Model After Birth
Kleefstra syndrome is a rare genetic disease caused by a mutation or deletion in one copy of a gene called EHMT1, which ...
Loading Comments...