OCT 18, 2020 5:13 AM PDT

Small RNA is Connected to Bacterial Pathogenicity

WRITTEN BY: Carmen Leitch

It's thought that over half of the global population carries a bacterium called Helicobacter pylori in their stomach. While it's often harmless, in some people the microbe can cause inflammation and may lead to ulcers or the development of stomach cancer. The bacterium has ways to hide out in the niches of the stomach and has virulence factors that can enable it to withstand the harsh environment there and cause disease. Researchers have now learned that a small bacterial RNA molecule called NikS is regulating many of these factors. The findings have been reported in Molecular Cell.

Artistic representation of human stomach cells infected with Helicobacter pylori, showing the special Hummingbird cell shape induced by the bacterium. Credit  (Image: Chair of Molecular Infection Biology II / University of Wuerzburg / SCIGRAPHIX)

The scientists found that NikS is helping to control four genes: two of H. pylori's critical virulence factors and two encoding for outer membrane proteins. NikS is helping control the gene encoding for the bacterial oncoprotein CagA, which has a major role in H. pylori-induced cancer development

"With the knowledge of the different functions and underlying molecular mechanisms of this small RNA during infection and the associated bacterial signaling pathways, we can gain new targets for the development of novel antimicrobial strategies," said the senior study author Professor Cynthia Sharma, the Chair for Molecular Infection Biology II at Julius-Maximilians-Universität (JMU) Würzburg.

H. pylori can survive in the inhospitable stomach environment in part because of a mechanism called phase variation, in which random gene mutations are employed by bacteria. This gives a microbial population flexibility so it can adapt and survive, at least some of the bacteria in a population will be ready to generate the right amount of protein at the right time.

This work has suggested that phase variation does not only impact genes that encode for proteins; it also influences small, non-coding RNA molecules like NikS. Different levels of NikS might be affected by phase variation, which would impact disease-causing factors. NikS was also shown to affect how bacteria enter host cells.

"This mechanism could play a major role in enabling Helicobacter pylori to adapt successfully to the variable stomach environment and thus chronically colonize its host," said Sharma.

The researchers want to know more about how NikS is involved in the ability of H. pylori to colonize different parts of the stomach, and the effect it has on bacterial genes and pathogenicity.

Soures: AAAS/Eurekalert! via University of Würzburg, Molecular Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 18, 2020
Cardiology
A Key Juncture Between Diabetes and Heart Repair
AUG 18, 2020
A Key Juncture Between Diabetes and Heart Repair
Patients with diabetes are often at increased cardiovascular risk. Recent research points to a possible new target for t ...
AUG 30, 2020
Genetics & Genomics
Brown Fat Transplants Could Reduce Metabolic Disease
AUG 30, 2020
Brown Fat Transplants Could Reduce Metabolic Disease
The Centers for Disease Control and Prevention (CDC) estimates that in 2018, obesity impacted about 42% of American adul ...
AUG 30, 2020
Cell & Molecular Biology
Transfer RNA Mutations May Be an Overlooked Cause of Disease
AUG 30, 2020
Transfer RNA Mutations May Be an Overlooked Cause of Disease
Our bodies need vast numbers of proteins to function. Dysfunctional proteins, which can be caused by errors in the genes ...
SEP 09, 2020
Microbiology
Changing How We Think of Drug Resistance in Fungi
SEP 09, 2020
Changing How We Think of Drug Resistance in Fungi
It's been estimated that fungal infections cause more than one million deaths worldwide, and many more are affected.
OCT 09, 2020
Cell & Molecular Biology
Proteins Have an Orientation in Plant Cells
OCT 09, 2020
Proteins Have an Orientation in Plant Cells
Just like animals, plants are made of cells that are full of proteins. The proteins in plant cells are often only found ...
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
Loading Comments...