OCT 25, 2020 4:22 AM PDT

Revealing More About the Genetics of Ewing Sarcoma

WRITTEN BY: Carmen Leitch

Ewing sarcoma is a rare kind of cancer that tends to impact young people and occurs in bones or the tissue around them. It may begin in the pelvis but could start in any bone. Ewing sarcoma often begins when a piece of DNA is rearranged, like when a gene called EWSR1, which sits on chromosome 22, fuses with a gene on chromosome 11 called FLI1. A fusion protein is then created by cells where this chromosomal translocation has taken place, and the EWSR1-FLI1 protein can promote the development of tumors. The EWSR1 portion can activate transcription, while FLI1 enables it to bind to DNA.

Image credit: Pxfuel

In new work reported in Science Advances, researchers have identified a crucial role for a gene called RING1B in the development of Ewing sarcoma. The EWSR1-FLI1 fusion protein is oncogenic, hijacking transcription, in which genes are turned into RNA so they can be translated into proteins. Cells carrying this fusion protein become cancerous as they start to divide uncontrollably.

Both RING1B and EWSR1-FLI1 go to the same part of the genome, and RING1B recruits the fusion protein to the DNA. The researchers determined that when RING1B is depleted, tumor growth is impaired in cells with the fusion protein. Without RING1B, the EWSR1-FLI1 fusion protein is not able to turn its target genes on and turn a healthy cell into a cancerous one.

"Our findings offer striking insights into the mechanism of Ewing sarcoma, helping us get closer to uncovering the elusive cell-of-origin for this rare type of cancer," said study co-author Luciano Di Croce, a researcher at the Centre for Genomic Regulation (CRG). "All we have to do is look for high levels of RING1B."

While scientists have proposed using epigenetic inhibitors, which can affect gene activity, for the treatment of Ewing sarcoma, this work indicates that inhibiting RING1B could also be a way to treat this cancer.

"EWSR1-FLI1 remains a challenging druggable target, therefore understanding its dependencies may offer alternative strategies to switch off its aberrant transcriptional program," said the first study author Sara Sánchez-Molina, a postdoctoral researcher at the Institut de Recerca Sant Joan de Déu.

"Ewing tumors are paradigmatic examples of developmental cancers, where the first hit (genetic or epigenetic) occurs during embryonic development and, in the majority of Ewing sarcomas, develops postnatally during specific stages of growth like puberty. The study supports the model by which embryonic stem cells characterized by high levels of RING1B are capable to sustain the aberrant transcriptional program caused by the oncogenic fusion protein. Ewing sarcoma will develop if the individual is born with precursor cells bearing the fusion oncoprotein," added study director Jaume Mora, Scientific Director of the Pediatric Cancer Center Barcelona-Institut de Recerca Sant Joan de Déu.

Sources: AAAS/Eurekalert! via Center for Genomic Regulation, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 07, 2021
Cell & Molecular Biology
How Cells Use Messengers to Signal to One Another
NOV 07, 2021
How Cells Use Messengers to Signal to One Another
In recent years, researchers have discovered the importance of a kind of antenna that is found on most cells, a structur ...
NOV 16, 2021
Cell & Molecular Biology
Modeling the Separation of Liquids in Cells
NOV 16, 2021
Modeling the Separation of Liquids in Cells
Oil and water are both liquids, but they don't mix well, demonstrating a phenomenon known as liquid-liquid phase separat ...
NOV 23, 2021
Clinical & Molecular DX
Stopping COVID False-Positives From Slipping Through the Cracks
NOV 23, 2021
Stopping COVID False-Positives From Slipping Through the Cracks
False-positive COVID tests results—where the patient isn’t infected but receives a positive result—tri ...
NOV 26, 2021
Cell & Molecular Biology
Twin Study Reveals Epigenetic Links to Type 2 Diabetes
NOV 26, 2021
Twin Study Reveals Epigenetic Links to Type 2 Diabetes
Identical twins carry the same genome in their cells, which makes them powerful subjects in the study of human disease. ...
NOV 29, 2021
Cell & Molecular Biology
Researchers Discover a New Type of Cell in the Retina
NOV 29, 2021
Researchers Discover a New Type of Cell in the Retina
Many types of cells in the eye were identified 100 years ago. But researchers found something new there.
DEC 01, 2021
Cell & Molecular Biology
Children Exposed to Famine Have a Lasting Epigenetic Impact
DEC 01, 2021
Children Exposed to Famine Have a Lasting Epigenetic Impact
Exposure to famine and prenatal exposure to famine has been consistently linked to a variety of health problems includin ...
Loading Comments...