JUN 27, 2021 4:00 AM PDT

Organoids Reveal Common Mechanism Underlying Rare Disorders

WRITTEN BY: Carmen Leitch

Genetic testing has shown that mutations in a gene called HUWE1 are connected to rare syndromes that cause developmental problems, including stunted growth and difficulties with movement. Some patients are so severely impacted that they never learn to speak. There is no cure for these HUWE1-associated diseases. While genetic sequencing can't always show scientists how to treat these disorders, knowing that they are caused by genetic errors can sometimes be a comfort to families. Molecular techniques have now also enabled researchers to examine the physiological impact of those genetic errors.

Image credit: Pixabay

"Many parents are afraid that the cause of their child's condition stems from something they could have avoided. A lot of parents have thought this for years before the child is referred and given a genetic diagnosis, which often adds an extra burden to their situation. Once they know that damage to a gene is the cause, many of them are hugely relieved. It wasn't the one glass of wine during the pregnancy that was the cause after all," explained Marte Gjøl Haug, the senior consultant in medical genetics at St. Olavs Hospital in Trondheim, Norway.

The HUWE1 gene is located on the X chromosome. Girls and boys with mutations in this gene display a wide range of symptoms. In the clinic, various diagnoses may be given to these patients, like Juberg-Marsidi, Say-Meyer, or Brooks syndrome, which are all considered rare disorders. But they are all due to different mutations in the same gene: HUWE1.

"Individually, many of the syndromes are rare, but a lot of people are affected if you combine all the rare syndromes," said Professor Barbara van Loon.

In this study, van Loon was able to obtain samples from five patients to generate induced pluripotent stem cells. Those were then used to create miniature, simplified versions of human brains, called organoids, which would help the researchers observe the physiological changes caused by the individual mutations.

Researchers have long known that a protein called p53 is vital to controlling cell division and preventing the development of cancer. The p53 protein is also known to be related to some neurological processes. HUWE1 is involved in regulating p53. This work, which was published in Cell Reports Medicine, suggested that the mutations in these syndromes increase p53 signaling, which leads to the developmental problems, including intellectual disabilities.

"Our findings don't mean that we can come up with a quick cure, but being able to explain the very basic mechanisms behind an illness is an important prerequisite for developing diagnostics and serving as a basis for future treatment. It's also important in itself to give the affected families more information about the disease and how it's developed," said van Loon.

Sources: AAAS/Eurekalert! via Norwegian University of Science and Technology, Cell Reports Medicine

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 24, 2022
Immunology
Researchers Learn How Sugar Boosts Inflammation
MAR 24, 2022
Researchers Learn How Sugar Boosts Inflammation
Our bodies need sugar; carbohydrates are critical to health. But many of the foods we consume, like soft drinks, cereals ...
APR 17, 2022
Immunology
Finding the Cause of Severe Asthma
APR 17, 2022
Finding the Cause of Severe Asthma
Asthma is a chronic inflammatory disorder in which the airways narrow, which impairs breathing and causes coughing or ti ...
APR 25, 2022
Neuroscience
Oxytocin Release Increases with Age, and Boosts Life Satisfaction
APR 25, 2022
Oxytocin Release Increases with Age, and Boosts Life Satisfaction
As people age, they tend to produce more oxytocin and become more caring. The corresponding study was published in  ...
APR 26, 2022
Genetics & Genomics
Scientists Make a Breakthrough in Mitochondrial Genome Editing
APR 26, 2022
Scientists Make a Breakthrough in Mitochondrial Genome Editing
Most genetic work is focused on the genome found in the nucleus, which contains the genes that encode for almost all of ...
MAY 02, 2022
Immunology
A Gene Defect That Causes Deadly Reactions to Viruses & Vaccines
MAY 02, 2022
A Gene Defect That Causes Deadly Reactions to Viruses & Vaccines
For many years, researchers have stressed the need to add diverse populations to genetic studies, which have often cente ...
MAY 07, 2022
Drug Discovery & Development
Ibuprofen and Blood Pressure Medication Linked to Kidney Damage
MAY 07, 2022
Ibuprofen and Blood Pressure Medication Linked to Kidney Damage
A combination of ibuprofen and certain blood pressure medications could lead to acute kidney injury. The corresponding s ...
Loading Comments...