MAY 29, 2016 7:00 AM PDT

Might Alzheimer's Disease Stem From a Brain Infection?

WRITTEN BY: Carmen Leitch
The amyloid-β peptide (Aβ) is a crucial protein in the development of Alzheimer’s disease (AD). Thought to cause the death of neurons, Aβ can aggregate to form insoluble aggregates, known as amyloid plaques, in the brains of patients with AD. They are one of the hallmarks of the disease. 
?-amyloid fibrils grow from yeast surfaces and trap Candida albicans in culture medium.
It’s been previously reported that Aβ is an antimicrobial peptide. One characteristic of Aβ peptides is oligomerization, or the formation of supramolecular structures. Usually seen as inherently pathological, a new report by Robert D. Moir, Rudolph E. Tanzi, and colleagues at Harvard Medical School, in Science Translational Medicine suggests that oligomerization may actually be necessary for the antimicrobial action of the peptide; that it allows Aβ to form a structure that captures the infecting organism. The work also shows that the expression of Aβ guards against bacterial and fungal infections in cell culture, nematode, and mouse models of AD. 
Infection-induced ?-amyloid deposits colocalize with Salmonella in AD mouse brain.
As part of the study, researchers injected Salmonella into young mouse brains that were free of plaques. They observed a rapid accumulation of β-amyloid deposits, and those buildups were closely aligned with the location of a bacterial infection. “Overnight, the bacteria seeded plaques,” Dr. Tanzi said. “The hippocampus was full of plaques, and each plaque had a single bacterium at its center.”

To verify the antibacterial properties of Aβ, researchers checked mice that don’t produce any Aβ. It was found that they are not able to fight off bacterial infections. They have confirmed that result in nematodes and cell culture. Mice lacking Aβ also do not form plaques.

The work builds on the idea that as the blood-brain barrier gets weak with age, it can’t keep infections out. Aβ comes in to do its work as an antimicrobial agent, but after the invader is killed, what’s left behind damages the brain. 

This new research is very exciting for the field. It might be the connection between disparate findings, such as high levels of a herpes antibody in some AD patients. The director of the Zilkha Neurogenetic Institute at the University of Southern California, Dr. Berislav Zlokovic,  said his research on the blood-brain barrier would fit well with this new hypothesis. He discovered that as people age, the barrier started to break down, and the most damaged part was around the hippocampus, which is the site of memory and learning. It’s also where Alzheimer’s plaques form.

Dr. David Holtzman, who is the chair of neurology at the Washington University School of Medicine in St. Louis, was also piqued. “It is obviously outside the box,” he said. “It really is an innovative and novel study.”

The researchers note that it is still unclear whether Aβ is combating a real or incorrectly perceived infection in AD. Regardless, these observations identify inflammatory pathways as potential new targets for drugs treating AD.

Sources: PLOS ONE, New York Times, Science Translational Medicine
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 28, 2019
Genetics & Genomics
NOV 28, 2019
Promising New Treatment for Mitochondrial Disease Found in Fruit Flies
Researchers at the University of Cambridge have discovered a protein in fruit flies that can reverse the effects of harmful mutations in mitochondrial gene...
DEC 08, 2019
Cell & Molecular Biology
DEC 08, 2019
Time-Restricted Eating Improves Symptoms of Metabolic Syndrome
Occasional fasting has been linked to a variety of health benefits....
DEC 09, 2019
Drug Discovery & Development
DEC 09, 2019
Could the diabetic drug 'metformin' extend a healthy lifespan?
The most commonly prescribed diabetic medication for the Type 2 condition is ‘Metformin’—a drug with a mysterious mechanism of action but...
DEC 18, 2019
Cell & Molecular Biology
DEC 18, 2019
Using Nanopores to Sequence Proteins
Researchers have now created a way to use nanopores to identify the amino acids that make up a protein....
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Braveheart RNA Structure is Revealed For the First Time
Protein-coding genes only make up a small part of the genome. Much of the rest may contain long, non-coding RNA sequences....
FEB 02, 2020
Cell & Molecular Biology
FEB 02, 2020
New T Cell Therapy is a Universal Approach to Target Cancer
For years, researchers have been trying to harness the power of the assassins of the immune system - killer T cells....
Loading Comments...