MAY 29, 2016 07:00 AM PDT

Might Alzheimer's Disease Stem From a Brain Infection?

WRITTEN BY: Carmen Leitch
The amyloid-β peptide (Aβ) is a crucial protein in the development of Alzheimer’s disease (AD). Thought to cause the death of neurons, Aβ can aggregate to form insoluble aggregates, known as amyloid plaques, in the brains of patients with AD. They are one of the hallmarks of the disease. 
?-amyloid fibrils grow from yeast surfaces and trap Candida albicans in culture medium.
It’s been previously reported that Aβ is an antimicrobial peptide. One characteristic of Aβ peptides is oligomerization, or the formation of supramolecular structures. Usually seen as inherently pathological, a new report by Robert D. Moir, Rudolph E. Tanzi, and colleagues at Harvard Medical School, in Science Translational Medicine suggests that oligomerization may actually be necessary for the antimicrobial action of the peptide; that it allows Aβ to form a structure that captures the infecting organism. The work also shows that the expression of Aβ guards against bacterial and fungal infections in cell culture, nematode, and mouse models of AD. 
Infection-induced ?-amyloid deposits colocalize with Salmonella in AD mouse brain.
As part of the study, researchers injected Salmonella into young mouse brains that were free of plaques. They observed a rapid accumulation of β-amyloid deposits, and those buildups were closely aligned with the location of a bacterial infection. “Overnight, the bacteria seeded plaques,” Dr. Tanzi said. “The hippocampus was full of plaques, and each plaque had a single bacterium at its center.”

To verify the antibacterial properties of Aβ, researchers checked mice that don’t produce any Aβ. It was found that they are not able to fight off bacterial infections. They have confirmed that result in nematodes and cell culture. Mice lacking Aβ also do not form plaques.

The work builds on the idea that as the blood-brain barrier gets weak with age, it can’t keep infections out. Aβ comes in to do its work as an antimicrobial agent, but after the invader is killed, what’s left behind damages the brain. 

This new research is very exciting for the field. It might be the connection between disparate findings, such as high levels of a herpes antibody in some AD patients. The director of the Zilkha Neurogenetic Institute at the University of Southern California, Dr. Berislav Zlokovic,  said his research on the blood-brain barrier would fit well with this new hypothesis. He discovered that as people age, the barrier started to break down, and the most damaged part was around the hippocampus, which is the site of memory and learning. It’s also where Alzheimer’s plaques form.

Dr. David Holtzman, who is the chair of neurology at the Washington University School of Medicine in St. Louis, was also piqued. “It is obviously outside the box,” he said. “It really is an innovative and novel study.”

The researchers note that it is still unclear whether Aβ is combating a real or incorrectly perceived infection in AD. Regardless, these observations identify inflammatory pathways as potential new targets for drugs treating AD.

Sources: PLOS ONE, New York Times, Science Translational Medicine
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 20, 2019
Cancer
SEP 20, 2019
Self-Destructing Cancer: Study Stops Chain Reaction of Tumor Growth
A new study reveals that stopping one protein from functioning can cause some cancer cells to die from stress....
SEP 20, 2019
Genetics & Genomics
SEP 20, 2019
The Mechanisms Underlying Rapid Sex Change in Fish are Revealed
For most animals, the sex is established early on in development and they stay that way throughout the life of the organism....
SEP 20, 2019
Genetics & Genomics
SEP 20, 2019
Is Schizophrenia Really Genetic?
Schizophrenia is known as one of the most common serious mental illnesses. Characterized by a decreased ability to understand reality and hearing voices th...
SEP 20, 2019
Microbiology
SEP 20, 2019
Specific Gut Microbes Slow ALS Progression in a Mouse Model
We've come a long way in the five years since the ice bucket challenge drew attention to amyotrophic lateral sclerosis (ALS)....
SEP 20, 2019
Microbiology
SEP 20, 2019
Picturing a New Kind of Antibiotic
Scientists have deciphered the X-ray crystal structure of an enzyme that generates a unique broad spectrum antibiotic called obafluorin....
SEP 20, 2019
Immunology
SEP 20, 2019
New Observations of a Cancer Transcriptase
New research shows a transcriptase that helps time cell death varies in expression, and is unusually localized, in cancer cells.  The transcriptase, T...
Loading Comments...