JUN 02, 2016 05:02 AM PDT

Questions About Mitochondrial Replacement Therapy Efficacy Arise

WRITTEN BY: Carmen Leitch
Mitochondrial replacement therapy was hailed as a promising new way to overcome diseases passed down in the DNA of mitochondria, but new research is demonstrating that it may not always be successful. 
Micrograph of ragged red fibers in mitochondrial myopathy
In a study published in Cell Stem Cell, Dieter Egli, an Assistant Professor of Stem Cell Biology at Columbia University, and colleagues have shown that if even a minute amount of the deleterious mitochondria persist after the transfer - a typical occurrence - they are able to compete with the healthy mitochondria, sometimes outcompeting them.
 
“It would defeat the purpose of doing mitochondrial replacement,” said Egli. He continued that the findings might inspire ways to solve this problem, but he recommends that in the meantime, the procedure should not be used.
 
People inherit all mitochondria from their mothers, and about one in 5,000 suffer from diseases caused by mutations in mitochondrial DNA (mitochondria carry their own genome). If a woman is carrying deleterious mutations in her mitochondrial DNA, the remedy, it is theorized, is to insert her nuclear DNA into a carrier egg with healthy mitochondrial DNA. They are sometimes referred to as three-person embryos because the egg comes from a donor, plus the nuclear DNA from mom and dad.
 
Current methodology leaves a very small amount of the unhealthy mitochondria being carried over into the healthy egg. It’s usually less than 2% of the resulting total mitochondria, and not enough cause disease by itself, but researchers worry that that percentage may rise over the course of development.
While replacement of the mitochondrial genome is possible, even minute levels of heteroplasmy can affect mtDNA genotype stability, compromising efficacy of mitochondrial replacement.
Egli’s work used a procedure like the real therapy by transplanting nuclear DNA from one set of egg cells into another woman’s egg cells. Then the team used parthenogenesis; they converted the eggs into embryos with two copies of the maternal genome. Usually, mitochondrial replacement is done with eggs fertilized by sperm, but Egli’s team wanted to remove any role for paternal DNA. Stem cells were then extracted from the embryos and grown in dishes in the lab.
 
The embryos had only 0.2% of mitochondrial DNA (mtDNA) carried over, and the resulting embryonic stem cells at first had similarly tiny levels. But as the cells grew and divided, levels of the carried-over mtDNA became highly variable. When the cells were split into different dishes, sometimes the donor egg’s mtDNA won out while in others, the carried-over mtDNA dominated. And in another batch of experiments, low levels of carried-over mtDNA consistently outcompeted donor mtDNA.
 
Feedback on the work from scientists in the field has been a mixed bag. One researcher, Iain Johnston, a biomathematician at the University of Birmingham, UK, supports the theory that one mitochondrion can copy its DNA faster than the other mitochondria could, something he says is likelier to happen when big sequence differences exist in the DNA of the two different populations of mitochondria.
 
Another researcher, Mary Herbert, who works at the University of Newcastle, UK, as a reproductive biologist and is part of a team advancing mitochondrial replacement, thinks the use of embryonic stem cells in the study poses a real problem for drawing solid conclusions. “They are peculiar cells, and they seem to be a law unto themselves,” she said, also calling the biological relevance of this report “questionable”. Future studies will hopefully help provide more insight.
 
The UK Human Fertilization and Embryology Authority, which regulates embryonic research and fertility clinics in Britain, is waiting on experimental results relating to the efficacy and safety of this technique before allowing mitochondrial replacement therapy in people.

      
 
Sources: Nature, Cell Stem Cell
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 11, 2018
Videos
AUG 11, 2018
Hit The Sweet Spot - MIT's Image Awards
MIT researchers are trying to engineer a smarter insulin....
AUG 28, 2018
Genetics & Genomics
AUG 28, 2018
A New Type of Cell is Discovered in the Human Brain
This cell type has never been observed in laboratory animals....
SEP 04, 2018
Cell & Molecular Biology
SEP 04, 2018
Powerful Imaging Reveals Immune Cells on Patrol
With a tool called lattice light sheet microscopy, scientists can view biological processes as they happen in live cells....
SEP 18, 2018
Cell & Molecular Biology
SEP 18, 2018
Visualizing the Organization of Human Cells With Machine Learning
Instead of fluorescent labeling, scientists found a way to use computers to identify cellular structures....
OCT 07, 2018
Cell & Molecular Biology
OCT 07, 2018
Towards a Deeper Understanding of Heart Development
If we learn how the heart is built, we may learn how to mend a broken one....
OCT 16, 2018
Genetics & Genomics
OCT 16, 2018
Lab-grown Neurons Help Uncover the Genetic Changes Underlying Mental Illness
Developing therapeutics that will effectively relieve mental illness means understanding what is causing those disorders in the first place....
Loading Comments...