JUN 14, 2016 02:03 PM PDT

MicroRNAs Predict Disease Progression in Brain Tumors

WRITTEN BY: Carmen Leitch
Researchers at two German research facilities, the Ludwig Maximilians University of Munich (LMU) and Helmholtz Zentrum München have reported a new way to predict disease progression in gliobastoma patients who underwent standard treatment. Their study, published in Oncotarget, has shown that four microRNAs (miRNAs) might be the critical reporters. Measuring the levels of those miRNAs enabled the team to predict how good or bad the prognosis was for the patient. A patent application for this work has even been filed already.
 Irradiation planning of a glioblastoma. Image: Klinikum der Universität München
Collaborating with the Institute of Neurology at the University Hospital of Frankfurt, researchers were able to directly examine tumor samples from 36 patients who had well-documented health and treatment histories. "We repeatedly detected four miRNAs in tumors that had a particularly poor prognosis," says Dr. Karim-Maximilian Niyazi, a physician at the hospital at LUM and first author of the study.
   An overview of how miRNAs work, from Longevinex.com           
miRNAs are molecules made up of short sequences of RNA. They seem to work in a variety of ways as a regulator; they turn off genes by disrupting the RNA level, by reducing stability or inhibiting translation. An estimated 2,000 different miRNAs have been identified so far in plants, animals and even in some viruses.

Glioblastomas are considered highly malignant brain tumors because of the speed with which they reproduce as well as having an extensive blood vessel support network. They are the most common type of brain tumor, with an unclear cause and very few biomarkers that indicate their presence. Glioblastomas have also been shown to have miRNA ‘expression signatures’.

The scientists were able to use their data on miRNA expression to create a risk score for patients, and that score separated the patients into two distinct groups, different from the other in their prognosis. One group had a survival prediction of 10 months, the other group was given 15 months.

The findings were then corroborated using an additional 58 patient samples. Using their computational methods to calculate risk scores, they were able to confirm the predictive value with the new cohort.

Looking at where those miRNAs might be exerting their activity, they saw effects on a pathways like axon guidance, immune response, and membrane transport, all of which are well known to participate in tumorigenesis. One miRNA is specifically related to tumor suppression, and that miRNA was also expressed at a higher level in patients with a more favorable outcome.

The researchers are fairly confident in the use of miRNAs to predict severity of disease in patients with glioblastomas following chemotherapy or surgery. They also note that this could be another small advance for the field of personalized medicine, as those with good predictions could be served by typical therapy, while patients with a poor prognosis might be put on a more aggressive regimen.

For a detailed explanation of how microRNAs work, check out the video below.


Sources: Oncotarget, AAAS
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 19, 2018
Technology
AUG 19, 2018
CRISPR Technology Seeks To Eliminate Genetic Diseases
Researchers at the University of Illinois have adapted to new CRISPR gene-editing technology that causes the cell's internal machinery to skip over a s...
SEP 04, 2018
Cell & Molecular Biology
SEP 04, 2018
Powerful Imaging Reveals Immune Cells on Patrol
With a tool called lattice light sheet microscopy, scientists can view biological processes as they happen in live cells....
SEP 23, 2018
Cell & Molecular Biology
SEP 23, 2018
Insulin may be a new Colitis Treatment
Insulin is a necessary medicine for diabetics, but new work shows that insulin may also be used to treat chronic bowel inflammation....
SEP 25, 2018
Cell & Molecular Biology
SEP 25, 2018
Creating Circuits to Detect and React to Conditions in Live Cells
Researchers at Caltech have taken an interesting approach to synthetic biology....
SEP 29, 2018
Videos
SEP 29, 2018
CRISPR Technology may Have Serious Drawbacks
The CRISPR gene-editing system has been touted as a miraculous tool, but it has its problems....
OCT 11, 2018
Cell & Molecular Biology
OCT 11, 2018
Revealing a 'Double Agent' in the Immune System
Researchers want to enhance our natural defenses to fight a variety of health problems more effectively....
Loading Comments...