JUL 08, 2016 10:41 AM PDT

Pathogenic Bacterium Uses Gene Amplification to Cause Infection

WRITTEN BY: Carmen Leitch
While most bacteria is harmless, some have evolved into pathogens, which have various ways of causing infectious disease. Investigators at Umeå University in Sweden have now discovered that some bacteria are able to multiply specific genes which are required for causing infection, thus inducing disease. 
Illustration of the discovery by Umeå researchers. To the left: inactive Yersinia bacteria with just one ring-shaped DNA strand cannot cause infection. To the right: active Yersinia bacteria with multiple DNA plasmids which can cause intestinal disease in the mouse. / Credit: Kemal Avican, Umeå University
Over 22 years ago, researchers at Umeå were the first to determine the infection strategy of Yersinia bacteria, a human pathogen which has a protein structure in the cell walls that resembles a syringe. The structure, called "Type III secretion system" or T3SS, enables the transfer of bacterial proteins into a host cell, destroying its metabolism. 

After that discovery, scientists have found T3SS in other species of bacteria, proving T3SS to be a common mechanism of infection mechanism that pathogens, such as a virus or virulent bacterium, use to destroy host cells. Umeå researchers have now found the link between disease and rapid production of the proteins required to form the so-called poisonous syringe. An overview of the T3SS mode of action is shown in the video below from Garland Science.
In collaboration with researchers at the Helmholtz Centre for Infection Research in Braunschweig, Germany, the team investigated the infection strategy of Yersinia pseudotuberculosis. Closely related to the deadly plague bacterium, this microbe can cause acute diarrhea, stomach pains and vomiting and stomach pains. The genes the bacteria need for infection are located on a circular extra chromosome, called a virulence plasmid.

 First, the investigators studied infected human cells in culture, then confirmed the findings with animal models. They learned that a lone copy of the virulence plasmid could not induce infection, but when the Yersinia bacteria came in contact with host cells, a "copying machine" was triggered, increasing the number of plasmids. So, for the first time researchers have shown that an increased amount of plasmid-encoded genes is required for the establishment of infection by pathogenic bacteria.

"Yersinia has developed a very clever strategy," says postdoctoral fellow Helen Wang and first author of the study that reported their findings in Science. "To carry a great number of plasmids, the bacteria need a lot of energy and it negatively affects the bacteria's metabolism and growth. But having one copy of the plasmid as a blueprint that can be rapidly amplified in case of infection is a very clever solution. Many copies of the plasmids give bacteria the opportunity to build up many T3SS and all the proteins needed to quickly knock out host cells during an infection," explains Wang.

"Our study represents a breakthrough in which we show that gene-dosage of plasmid-encoded genes is a fast regulatory strategy used by bacteria. This discovery will contribute to increased insights into bacterial resistance to antibiotics, and is a major step forward in our understanding of how bacteria cause disease," says Research Engineer Tomas Edgren, who led the study along with Professor Hans Wolf-Watz.

Sources: AAAS/Eurekalert!, Garland Science, Science
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 10, 2018
Genetics & Genomics
NOV 10, 2018
Scientists Engineer a Better Way to Direct Evolution
Directed evolution is a Nobel-prize winning technique that has now been simplified and accelerated....
NOV 13, 2018
Microbiology
NOV 13, 2018
How the Microbiome, Fiber, and Heart Health are Linked
High-fiber diets are linked to better health, including healthier hearts and arteries, but why?...
NOV 15, 2018
Videos
NOV 15, 2018
Viewing the Interactions Between Cellular Structures
Scientists have used powerful microscopy techniques to learn more about how the dynamics of a live cell....
NOV 20, 2018
Videos
NOV 20, 2018
A Major Grant Aims to Improve our Understanding of Age-related Cognitive Decline
The American Heart Association has teamed up with the Allen Initiative in Brain Health and Cognitive Impairment to award the Salk Institute $19.2 million....
NOV 28, 2018
Videos
NOV 28, 2018
Nanorobots That can Move Through the Eye
Researchers want to create tiny drug delivery systems that can move through biological tissue....
DEC 10, 2018
Neuroscience
DEC 10, 2018
Vitamin D and Schizophrenia
with vitamin D deficiency had increased risk of being diagnosed with Schizophrenia in adult life. However, the exposure-risk relationship was non-linear...
Loading Comments...