AUG 13, 2016 08:36 AM PDT

New Method for Synthesizing DNA May Improve Therapeutics

WRITTEN BY: Carmen Leitch
Scientists at Michigan Technological University, publishing in the journal Organic Letters, have created a novel process for creating more effective drugs for gene therapy. 
The drugs in question are antisense DNA and they’re made from individual short strands of synthetic DNA. They have been used to treat a wide range of diseases including cancer, Ebola, and HIV. Only a few of these drugs are on the market, however. If you need some more information on antisense DNA, the video below has an in-depth explanation.
Messenger RNA encodes for the proteins that make up our bodies. When that mRNA copy is made from a normal gene, all is well. But when there is a genetic mutation, the mRNA carries that mutation and can result in a protein that doesn’t function properly and can cause serious illness or death.

Antisense DNA runs complementary to the sense strand of DNA used to create a messenger RNA copy, so the idea is that an antisense DNA drug can attach itself to the faulty mRNA copy and eliminate the problematic protein before it’s even made.

There are major caveats to this approach, unfortunately. Apparently synthetic DNA has a hard time staying stuck to the mRNA it’s opposing, and frees up the mRNA to make the defective protein. Making the DNA stickier is not a mystery to scientists, said Shiyue Fang, a Professor of Chemistry at Michigan Technological University and senior author of the new work. If some groups of atoms that have a partial positive charge - electrophiles - are added, the result is a stickier molecule. Because the electrophiles react with groups in the RNA that have a partial negative charge - nucleophiles - a powerful covalent bond is thus formed; the RNA then gets locked down for good.

Until now, synthetic DNA had to undergo a final soak in ammonia to clean off the chemical ingredients that are required for assembly of synthetic DNA. Not only does the ammonia neutralize the electrophiles, it gets rid of chemical linkers and protective groups. Alternative processes are unreliable, expensive and often require toxic chemicals.
By use of 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) as a protecting group and linker for oligodeoxynucleotide (ODN) synthesis, deprotection and cleavage are achieved under non-nucleophilic oxidative conditions. The nucleophile-sensitive thioester and ?-chloroacetyl groups are conveniently incorporated into ODN sequences. The technology could be universally useful for electrophilic ODN synthesis. / Credit: Organic Letters Lin et al
"So far, it's been very difficult to incorporate electrophiles in synthetic DNA," Fang said. "It's been like treating a garden with an herbicide that kills everything." He thinks that's going to change. "Our method just takes out the weeds,” he explained.

The process developed by Fang’s team uses alternative chemicals for the linking and protective actions that wash away much more easily using a solution that doesn’t harm electrophiles and is relatively innocuous. Other advantages of the new tool include low cost and improved safety, such that it will be much better for manufacturing important drugs. This method opens up the door to biochemists and microbiologists who can now use synthetic DNA for other potential applications.

Sources: phys.org via Michigan Technological University, Organic Letters
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 22, 2019
Cell & Molecular Biology
OCT 22, 2019
How the Sun's Rays Damage the Skin
We all need sunlight, but it's very easy to get too much. Sunlight is the main source of the ultraviolet radiation we're exposed to....
OCT 22, 2019
Neuroscience
OCT 22, 2019
Lab-grown mini brains make humanlike 'brain waves'
When a fetus reaches six months old, it starts to produce electrical signals resembling brain waves. Now, we know that clusters of lab-grown human brain ce...
OCT 22, 2019
Drug Discovery & Development
OCT 22, 2019
The Three Drugs that Reverse Biological Aging
In the last 100 years, life expectancy in the US has risen from 55 years until 79 (Roser: 2019). And with the continuous development of medicine and scie...
OCT 22, 2019
Neuroscience
OCT 22, 2019
New MRI scan can reveal molecular changes in the brain
MRI scans give us pictures of the brain that depict the physical structure of brain tissue. Now, researchers discovered a way to determine the biological m...
OCT 22, 2019
Cell & Molecular Biology
OCT 22, 2019
RNA Polymerases Can Signal to One Another Over Long Genomic Distances
Scientists have taken a close look at transcription in the Escherichia coli bacterium at the level of a single molecule....
OCT 22, 2019
Clinical & Molecular DX
OCT 22, 2019
The Three Common Herbs Combating High Blood Pressure: Molecular Mechanism Revealed
Hypertension is also known as high blood pressure is a serious condition. According to the Centers for Disease Control and Prevention, about 1 of...
Loading Comments...