AUG 24, 2016 10:31 AM PDT

Protein Helps Cells Retain Structure in Spite of Squeezing

WRITTEN BY: Carmen Leitch
When cells in our bodies are on the move, they often must fit into tight places and squeeze through tiny spaces before regaining their original conformation. While the details of that process remain unknown, researchers have found a protein that confers elasticity and durability on the cell nucleus; they've published their results in Developmental Cell. The scientists have also suggested this could be an explanation for why some cancer cells are so effective at invading.
The graphical abstract for the research paper / Credit: Developmental Cell Jayo et al
"The nucleus is the fattest organelle in the whole cell, and really needs to be squished if a cancer cell wants to metastasize throughout the body," explained the study leader, Maddy Parsons, a Professor of Cell Biology at King's College London. "There's a really complex network of proteins that keeps the cell from buckling in on itself when it's faced with a tight squeeze."

The research team found a protein, called fascin, which exists at really high levels in cancer cells. It was thought, Parsons said, that fascin was a bundling protein at the edge of the cell, functioning to bind and stabilize cellular protrusions. Those extensions, filopodia, enable the cell to sense the surrounding environment and migrate through tissue. The investigators show that fascin is also part of the periphery of the membrane surrounding the nucleus, the nuclear envelope. There, it prevents collapse by supplying stability and binding carious structures. The movie below, from the research report, shows how fascin helps the cell migrate.
"All cells have a cytoskeleton made from lots of filaments of a protein called actin that give the cell its architecture, but without other proteins added on, the skeleton will buckle under stress," continued Parsons. "Proteins like fascin that bind onto this cytoskeleton add an element of stability and flexibility - it makes the cell more mechanically stable and able to rapidly respond to the environment to change shape. This data we have, showing fascin at the nuclear periphery, has opened up a new way of thinking about how this protein controls cancer cell movement."

In order to learn more about the influence of fascin on the movement of cancer cells, the researchers put human cancer cells into artifical microchannels that have a range of pore sizes for cells to push through. After lowering levels of the fascin protein in the cells, the cells could not squish up their nuclei enough to fit through the smaller channels. That indicated to the scientists that fascin may be useful to cancer cells that must migrate through tissues of varying densities as they spread from a solid tumor.

"I think what we're showing is that fascin has more than one important role in controlling cancer cell metastasis," added Parsons. "Importantly, this is also revealing new ways that we can target fascin to block its function in cancer cells."

With her research group, Parson hopes to find out more about how cancer cell movement is controlled. "We're really still in the dark about what proteins are controlling these different functions of fascin. We still don't know what proteins and signals are telling fascin to move from the cell's edge to the nucleus, so these are the next questions we hope to tackle," she concluded.

Sources: AAAS/Eurekalert! via Cell Press News, Developmental Cell
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 21, 2020
Cell & Molecular Biology
Mutagens May Be Having a Bigger Effect Than We Knew
DEC 21, 2020
Mutagens May Be Having a Bigger Effect Than We Knew
New research has suggested that our DNA is more susceptible to mutagenic influences than we've appreciated. While organi ...
DEC 28, 2020
Cell & Molecular Biology
How an Herbal Compound May Fight Pancreatic Cancer
DEC 28, 2020
How an Herbal Compound May Fight Pancreatic Cancer
For centuries, Chinese practitioners have used herbs to treat all kinds of ailments. New research has shown that one of ...
DEC 28, 2020
Genetics & Genomics
Mapping Networks of Gene Expression in Cells
DEC 28, 2020
Mapping Networks of Gene Expression in Cells
Every cell contains our whole genome, but not all genes are turned on all the time; gene expression has to be very caref ...
JAN 10, 2021
Microbiology
Some Bacteria Know the Time
JAN 10, 2021
Some Bacteria Know the Time
People, animals, and even plants are known to have biological clocks, and new work has revealed that free-living bacteri ...
JAN 17, 2021
Cell & Molecular Biology
How a Nutrient Can Aid in Infection Prevention
JAN 17, 2021
How a Nutrient Can Aid in Infection Prevention
Antibiotic-resistant microbes are considered to be a serious threat to public health, one of many reasons why it's impor ...
JAN 22, 2021
Cell & Molecular Biology
A New Form of Lab-Cultivated Meat is Created
JAN 22, 2021
A New Form of Lab-Cultivated Meat is Created
Scientists have engineered a meat product that can be cultivated in a lab, and are suggesting that it contains more text ...
Loading Comments...