SEP 02, 2016 10:59 AM PDT

One Molecule Directs Stem Cells to Create new Bone

WRITTEN BY: Carmen Leitch
Pluripotent stem cells can form into any cell type in the human body through the process of normal human development. Creating stem cells that can be directed for use as therapeutics in specific tissues has remained a challenge. Scientists at the University of California, San Diego have reported in Science Advances that they’ve made progress in this area. The research team reports that feeding human pluripotent stem cells adenosine drives them to regenerate bone tissue. In mice, the tissue that was created from such stem cells aided in the repair of cranial bone defects in mice, all without causing infection or tumor development.
 
Stained image of human pluripotent stem cells cultured in adenosine to induce differentiation into functional osteoblasts. / Credit: UC San Diego

 
Such work could be helpful to many patients in the clinic that have suffered traumatic bone injuries, or who carry serious bone defects. It may also be a way to create a simple and inexpensive way to manufacture a cell line of bone builders that could be expanded and scaled-up.

"One of the broader goals of our research is to make regenerative treatments more accessible and clinically relevant by developing easy, efficient and cost-effective ways to engineer human cells and tissues," explained the senior author of the study, Shyni Varghese, a Bioengineering Professor at UC San Diego.

Getting stem cells to become specific tissues, or differentiate, has not been an easy problem to solve. The process is laborious, expensive, and not efficient. Additionally, teratomas can form.  Teratomas are runaway stem cells; they exhibit out of control differentiation and can cause tumors that contain a variety of different tissue types.

The team led by Varghese showed that human pluripotent stem cell differentiation into bone cells could be controlled by the addition of adenosine, a molecule that occurs naturally in the body. Beyond that, the bone cells the team generated went on to build bone tissue that contained blood vessels. Those tissues were subsequently transplanted into mice where they formed new tissue without teratomas.
Adenosine molecule, from Pixabay
 
"It's amazing that a single molecule can direct stem cell fate. We don't need to use a cocktail of small molecules, growth factors or other supplements to create a population of bone cells from human pluripotent stem cells like induced pluripotent stem cells," Varghese continued.

The team has previously published work on the influence of calcium phosphate minerals on the mechanism of stem cell differentiation into osteoblasts. They determined that calcium phosphate is taken up by stem cells to produce ATP, which breaks down adenosine, the signal for stem cells to become osteoblasts.

"We wondered what would happen if we bypassed the steps and just supplemented the medium with adenosine. That's what inspired this current study," Varghese concluded. The investigators are currently working to understand how adenosine promotes the formation of bone.

Sources: AAAS/Eurekalert! via UCSD, Science Advances
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 13, 2020
Cell & Molecular Biology
RNA Found on the Surface of Human Cells
SEP 13, 2020
RNA Found on the Surface of Human Cells
The surface of a cell carries many features to help it carry out its functions, communicate with other cells, gather inf ...
SEP 08, 2020
Neuroscience
Synchronizing Brain Waves Could Help Dyslexia Effects
SEP 08, 2020
Synchronizing Brain Waves Could Help Dyslexia Effects
New research from the University of Geneva shows that adults with dyslexia can read more fluently with a non-invasive el ...
OCT 17, 2020
Clinical & Molecular DX
Imaging Innovation Set to Ease the Pain of Osteoarthritis
OCT 17, 2020
Imaging Innovation Set to Ease the Pain of Osteoarthritis
In osteoarthritis, the joint cartilage that cushions bones begins to break down, causing debilitating pain and stiffness ...
OCT 21, 2020
Cell & Molecular Biology
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
OCT 21, 2020
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
During a heart attack, blood flow is blocked and cells lose oxygen and begin to die. Scientists are developing many new ...
NOV 01, 2020
Cell & Molecular Biology
There's More to Neutrophil Function Than We Knew
NOV 01, 2020
There's More to Neutrophil Function Than We Knew
Neutrophils are an abundant type of white blood cell that circulate in the blood that can provide a general defense aga ...
NOV 13, 2020
Cell & Molecular Biology
Astrocytes are Star Players in the Brain
NOV 13, 2020
Astrocytes are Star Players in the Brain
As neurons fire, they enable us to think and move. They signal to one another where they meet at synapses, and at chemic ...
Loading Comments...