SEP 11, 2016 11:57 AM PDT

DNA Repair and a Link to Oxidative Stress

WRITTEN BY: Carmen Leitch
The exact mechanisms that underlie the aging process are not yet fully understood. SIRT6 is one of only a few genes that has been shown to control longevity and a genetic disease called progeria, in which aging is accelerated. SIRT6 plays several functional roles including one in the repair of DNA, an essential and ongoing process. Researchers that have been investigating SIRT6 have published new work in Cell Reports showing that a protein called c-Jun N-terminal kinase or JNK activates SIRT6 following oxidative stress.
 
A rendering of DNA repair from Wikipedia
 
The universal process of aging is the result of a huge variety of influences and natural events. Some that have been clearly implicated as factors include inflammation, metabolic dysfunction, genome instability, epigenetic and transcriptional changes, and cell death. These and other cellular and molecular processes are interrelated, which makes teasing out their unique contributions to the overall event very difficult.
 
One favored explanation of what underpins the aging process is oxidative stress. While it seems clear that oxidative stress does lead to the pathology of aging, manipulating levels of oxidative stress does not definitively result in extension of lifespan. The short video below explains more about oxidative stress and the role is may have in aging in detail.
 

 
SIRT6, known to be important in the repair of damaged DNA, was associated with oxidative stress in a January 2016 publication in Cell Research by Pan et al. A new study published in Cell Reports by a different team of researchers has demonstrated that when JNK is inhibited, SIRT6 is not activated and strands of broken DNA are not efficiently repaired.
 
JNKs add phosphate groups to proteins to send stress signals inside cells; this research, performed at the University of Rochester, determined which amino acid residue on SIRT6 that JNK modifies. After that modification, SIRT6 is mobilized to the site of DNA damage, where it attracts an enzyme, PARP1. The enzyme then initiates the chemical process that repairs the damaged DNA. As such, the activated SIRT6 is crucial for efficient repair, recruiting enzymes to the accident site and getting them to work to make the necessary fix.
 
While much more work needs to be done to fully elucidate the cellular and molecular processes of aging, this study may be an important step in our understanding. The researchers believe it could lead to improved therapeutics, potentially with a drug that activates SIRT6, so DNA damage can be reduced.
 
"These drugs may be used to protect our genomes from damage, and could ultimately prevent cancer and extend healthy lifespan," commented Andrei Seluanov, an Associate Professor at the University of Rochester and senior author of the study. Seluanov builds on previous work on aging showing that an inferior mechanism of DNA repair is utilized in later life. In the video below from a few years ago, you can hear a little more about his research.
 

 
Sources: AAAS/Eurekalert! via University of Rochester, Cell ReportsCell Research Pan et al, Cell Research Liao et al, Nature
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 15, 2020
Microbiology
Monitoring a Virus in Real-Time as it Infects a Cell
NOV 15, 2020
Monitoring a Virus in Real-Time as it Infects a Cell
Hubrecht Institute researchers observe a virus as it invades a cell and competes with the host for control of the host c ...
NOV 17, 2020
Cell & Molecular Biology
Chronic Inflammation Lowers Levels of Aging-Linked Molecule
NOV 17, 2020
Chronic Inflammation Lowers Levels of Aging-Linked Molecule
Over the years, the molecule nicotinamide adenine dinucleotide (NAD+) has gone from being a player in some biochemical p ...
DEC 27, 2020
Genetics & Genomics
Delivering DNA- & RNA-Based Therapies in a New Way
DEC 27, 2020
Delivering DNA- & RNA-Based Therapies in a New Way
Gene therapy holds tremendous promise for its potential to cure genetic diseases. We've also recently seen how critical ...
DEC 28, 2020
Cell & Molecular Biology
How an Herbal Compound May Fight Pancreatic Cancer
DEC 28, 2020
How an Herbal Compound May Fight Pancreatic Cancer
For centuries, Chinese practitioners have used herbs to treat all kinds of ailments. New research has shown that one of ...
JAN 12, 2021
Cardiology
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
JAN 12, 2021
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
One of the biggest problems that come alongside diabetes is the increased risk of cardiovascular disease. Treatment of d ...
JAN 10, 2021
Cell & Molecular Biology
A New Way to Defend Against Mosquito-Borne Viruses
JAN 10, 2021
A New Way to Defend Against Mosquito-Borne Viruses
Mosquitoes are killers; they are thought to be responsible for the deaths of millions of people every year because of th ...
Loading Comments...