SEP 11, 2016 11:57 AM PDT

DNA Repair and a Link to Oxidative Stress

WRITTEN BY: Carmen Leitch
The exact mechanisms that underlie the aging process are not yet fully understood. SIRT6 is one of only a few genes that has been shown to control longevity and a genetic disease called progeria, in which aging is accelerated. SIRT6 plays several functional roles including one in the repair of DNA, an essential and ongoing process. Researchers that have been investigating SIRT6 have published new work in Cell Reports showing that a protein called c-Jun N-terminal kinase or JNK activates SIRT6 following oxidative stress.
 
A rendering of DNA repair from Wikipedia
 
The universal process of aging is the result of a huge variety of influences and natural events. Some that have been clearly implicated as factors include inflammation, metabolic dysfunction, genome instability, epigenetic and transcriptional changes, and cell death. These and other cellular and molecular processes are interrelated, which makes teasing out their unique contributions to the overall event very difficult.
 
One favored explanation of what underpins the aging process is oxidative stress. While it seems clear that oxidative stress does lead to the pathology of aging, manipulating levels of oxidative stress does not definitively result in extension of lifespan. The short video below explains more about oxidative stress and the role is may have in aging in detail.
 

 
SIRT6, known to be important in the repair of damaged DNA, was associated with oxidative stress in a January 2016 publication in Cell Research by Pan et al. A new study published in Cell Reports by a different team of researchers has demonstrated that when JNK is inhibited, SIRT6 is not activated and strands of broken DNA are not efficiently repaired.
 
JNKs add phosphate groups to proteins to send stress signals inside cells; this research, performed at the University of Rochester, determined which amino acid residue on SIRT6 that JNK modifies. After that modification, SIRT6 is mobilized to the site of DNA damage, where it attracts an enzyme, PARP1. The enzyme then initiates the chemical process that repairs the damaged DNA. As such, the activated SIRT6 is crucial for efficient repair, recruiting enzymes to the accident site and getting them to work to make the necessary fix.
 
While much more work needs to be done to fully elucidate the cellular and molecular processes of aging, this study may be an important step in our understanding. The researchers believe it could lead to improved therapeutics, potentially with a drug that activates SIRT6, so DNA damage can be reduced.
 
"These drugs may be used to protect our genomes from damage, and could ultimately prevent cancer and extend healthy lifespan," commented Andrei Seluanov, an Associate Professor at the University of Rochester and senior author of the study. Seluanov builds on previous work on aging showing that an inferior mechanism of DNA repair is utilized in later life. In the video below from a few years ago, you can hear a little more about his research.
 

 
Sources: AAAS/Eurekalert! via University of Rochester, Cell ReportsCell Research Pan et al, Cell Research Liao et al, Nature
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 15, 2021
Health & Medicine
Enabling biomarker discovery with functional proteomics
JUN 15, 2021
Enabling biomarker discovery with functional proteomics
Clinical biomarkers are critical for the acceleration of curative medicines. The identification of these novel clinical ...
JUN 14, 2021
Coronavirus
COVID-19 May Cause Diabetes
JUN 14, 2021
COVID-19 May Cause Diabetes
Reporting in Cell Metabolism, an international team of researchers has suggested that COVID-19 has caused diabetes in so ...
JUN 24, 2021
Cell & Molecular Biology
The Curiosity About Caterpillar Venom
JUN 24, 2021
The Curiosity About Caterpillar Venom
It seems like Australia is home to some of the world's deadliest animals, like taipan snakes and box jellyfish. Even the ...
JUN 27, 2021
Cell & Molecular Biology
Organoids Reveal Common Mechanism Underlying Rare Disorders
JUN 27, 2021
Organoids Reveal Common Mechanism Underlying Rare Disorders
Genetic testing has shown that mutations in a gene called HUWE1 are connected to rare syndromes that cause developmental ...
JUN 29, 2021
Microbiology
Gut Fungi May Be an Untapped Reservoir of Antibiotics
JUN 29, 2021
Gut Fungi May Be an Untapped Reservoir of Antibiotics
Viruses are not the only microbes that can cause serious public health problems. Researchers have been warning about a p ...
JUL 09, 2021
Cell & Molecular Biology
Wearable Tech for...Plants?
JUL 09, 2021
Wearable Tech for...Plants?
Researchers have developed a "wearable" patch to detect the gaseous substances plants emit when diseased or stressed,
Loading Comments...