SEP 11, 2016 11:57 AM PDT

DNA Repair and a Link to Oxidative Stress

WRITTEN BY: Carmen Leitch
The exact mechanisms that underlie the aging process are not yet fully understood. SIRT6 is one of only a few genes that has been shown to control longevity and a genetic disease called progeria, in which aging is accelerated. SIRT6 plays several functional roles including one in the repair of DNA, an essential and ongoing process. Researchers that have been investigating SIRT6 have published new work in Cell Reports showing that a protein called c-Jun N-terminal kinase or JNK activates SIRT6 following oxidative stress.
 
A rendering of DNA repair from Wikipedia
 
The universal process of aging is the result of a huge variety of influences and natural events. Some that have been clearly implicated as factors include inflammation, metabolic dysfunction, genome instability, epigenetic and transcriptional changes, and cell death. These and other cellular and molecular processes are interrelated, which makes teasing out their unique contributions to the overall event very difficult.
 
One favored explanation of what underpins the aging process is oxidative stress. While it seems clear that oxidative stress does lead to the pathology of aging, manipulating levels of oxidative stress does not definitively result in extension of lifespan. The short video below explains more about oxidative stress and the role is may have in aging in detail.
 

 
SIRT6, known to be important in the repair of damaged DNA, was associated with oxidative stress in a January 2016 publication in Cell Research by Pan et al. A new study published in Cell Reports by a different team of researchers has demonstrated that when JNK is inhibited, SIRT6 is not activated and strands of broken DNA are not efficiently repaired.
 
JNKs add phosphate groups to proteins to send stress signals inside cells; this research, performed at the University of Rochester, determined which amino acid residue on SIRT6 that JNK modifies. After that modification, SIRT6 is mobilized to the site of DNA damage, where it attracts an enzyme, PARP1. The enzyme then initiates the chemical process that repairs the damaged DNA. As such, the activated SIRT6 is crucial for efficient repair, recruiting enzymes to the accident site and getting them to work to make the necessary fix.
 
While much more work needs to be done to fully elucidate the cellular and molecular processes of aging, this study may be an important step in our understanding. The researchers believe it could lead to improved therapeutics, potentially with a drug that activates SIRT6, so DNA damage can be reduced.
 
"These drugs may be used to protect our genomes from damage, and could ultimately prevent cancer and extend healthy lifespan," commented Andrei Seluanov, an Associate Professor at the University of Rochester and senior author of the study. Seluanov builds on previous work on aging showing that an inferior mechanism of DNA repair is utilized in later life. In the video below from a few years ago, you can hear a little more about his research.
 

 
Sources: AAAS/Eurekalert! via University of Rochester, Cell ReportsCell Research Pan et al, Cell Research Liao et al, Nature
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 27, 2018
Genetics & Genomics
NOV 27, 2018
Researchers Stunned to Find People who Inherited Mitochondrial DNA From Dad
It was thought that in humans, mitochondrial DNA was passed on exclusively by mothers....
NOV 28, 2018
Cell & Molecular Biology
NOV 28, 2018
Microbes with an Expanded Genetic Code can Generate new Proteins with Special Properties
In recent years, scientists have created microbes that incorporate new nucleotide bases and new amino acids....
DEC 04, 2018
Immunology
DEC 04, 2018
Shared Bacteria After Birth
A study reveals the benefits of natural birth over cesarean birth in regards to immune development...
DEC 10, 2018
Neuroscience
DEC 10, 2018
Researchers Found Future Choice Predictive Neural Activity In The Prefrontal Cortex
Uncertainty and Gambling go hand-in-hand; there is never a sure bet. Researchers have identified neuronal activity in the prefrontal cortex that encodes predictive action....
DEC 13, 2018
Genetics & Genomics
DEC 13, 2018
Insights Into the Mechanisms Underlying Anxiety
Up to 40 million Americans have an anxiety disorder in any given year, and it's thought that only about a third get treatment....
DEC 22, 2018
Microbiology
DEC 22, 2018
A Viral Assassin Uses Bacterial Communication to Make the Kill
Researchers at Princeton University have found a virus that can eavesdrop on the communications between bacteria....
Loading Comments...