OCT 17, 2016 06:00 AM PDT

Goggatomy: for the Study of Live Cells Within Exoskeletons

WRITTEN BY: Carmen Leitch
Drosophila, the fruit fly, has been used as a model organism for decades by researchers investigate many different biological and genetic questions. Scientists would like to use them for the study of hearing; it’s thought that on the cellular level, human and fruit fly hearing is very similar. However, getting to the fruit fly ear is challenging.
 

 
A technology has been developed by researchers at the University of Iowa (UI) to address this issue, and they have called it a “goggatomy.” The goggatomy gives access to the ear of the fly, and organs of other types of insects, structures that are enclosed within a hard coating called an exoskeleton. It’s not only applicable to the study of hearing, either. Investigators researching anything from eyesight to the function of the brain and other physiological and biological mechanisms, can now open these structures to study the living cells inside of them. The procedure for opening arthropod skeletons is simple, and is described in the video above and published in Frontiers in Physiology, an open-access journal.
 
An exoskelton is composed of bones and skin that work in combination to form a double-plated armor for the body of an organism that confers protection on the organs against disease, predators and other dangers. Those little organs can be tucked into places that are very difficult to reach. That’s presented a major hurdle for studying them in the live state.
 
The ear of a fruit fly is one such example. The antenna of the fly is only 80 microns wide, finer than a human hair, and it is there that the ear sits. The exoskeleton protects this part of the insect as well, adding to the challenge of getting inside to the contents.
 
A goggatomy can be used to study the sensory cells in a fruit fly's antenna, which are shown in this scanning electron microscopy image. / Credit: Elena Sivan-Loukianova, Alan Kay, Daniel Eberl
 
"The essential problem is that the sensory cells are tucked inside the very small antennae, which prevents scientists from accessing the sensory cells," explained the paper's corresponding author Alan Kay, a Professor of Biology at UI.
 
Dentistry provided the inspiration for the solution. Kay’s father was a dentist, and as a kid, Kay was fascinated as by all the neat tools and materials used by his dad. He thought of trying to embed the fly's head in some kind of resin, to fix it  in space while alive so he the cells and organs might be studied.
 
Christopher Barawacz and Steven Armstrong were collaborators at the UI School of Dentistry who provided resins for Kay to try. Jon Scholte and Allan Guymon, of the UI Department of Chemical and Biochemical Engineering, determined the chemical characteristics of the resins. The finished product was able to hold the head in place without bonding to it. Kay used light to harden the resin; fine cuts could then be made without damage to the cells inside. To nourish the cells during the procedure, the team added a nutrient solution.


"There's nothing like having the detailed internal 3-D topology that's just right there," commented a co-author of the report, Daniel Eberl, a UI biologist who studies fruit fly hearing.
 
The technique was demonstrated to work on mosquitoes, ants, water fleas and mites. Eberl and Kay plan to utilize their new technique to investigate questions about the fly ear such as why ear cells respond differently to outside stimuli.
 
"Some of the sensory nerve cells respond to vibration, while others respond to simple deflection, as would happen in a breeze," Eberl explained.
 
The underlying mechanisms of hearing are still a mystery, whether in humans or flies.
 
"The remarkable thing is a fly ear and a human ear look vastly different, but there's a lot of similarity in how these organs work," concluded Eberl.
 
Sources: Science Daily via University of Iowa, Frontiers in Physiology
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 12, 2018
Genetics & Genomics
AUG 12, 2018
Bringing Genetics Research to the Developing World
Researchers want to ensure that technology is distributed equitably, to benefit everyone....
AUG 13, 2018
Videos
AUG 13, 2018
One Cell was Consumed by Another in a Evolutionary Leap
A process called endosymbiosis may have given evolution a lot of help....
SEP 15, 2018
Videos
SEP 15, 2018
A Hangover Cure in a Pill
A night of drinking can lead to a morning of regret for many people, but science is working on a solution for the physical pain....
SEP 19, 2018
Cell & Molecular Biology
SEP 19, 2018
A Molecule That Coaxes Muscles to Burn More Fat
Scientists have identified an important molecule that is critical to metabolism....
OCT 02, 2018
Drug Discovery
OCT 02, 2018
Mycobacterial Lung Disease, FDA Approves New Drug
New drug seeking to treat antibiotic-resistant lung disease has just been approved by the U.S. Food and Drug Administration. The drug is called ‘Arik...
OCT 21, 2018
Cell & Molecular Biology
OCT 21, 2018
The Nervous System Directly Controls Stem Cell Growth
Our body relies on adult stem cells throughout our lives; we need them to continuously generate new cells as they wear out, like on the skin and in our blood....
Loading Comments...