OCT 22, 2016 03:22 AM PDT

Some Animals Must Sense Rates of Temperature Change; Mechanism Found

WRITTEN BY: Carmen Leitch

Old experiments have led to the notion that frogs boiled gradually will not try to escape, while a sudden dunk in hot water will result in the frog jumping out. While the truth of that can be debated, it is known that many animals, including humans, are not only sensitive to temperature but also the rate at which temperature changes. It’s not well understood exactly why, however.
 

Growling grass frog / Credit: Wikimedia


Researchers at the University of California Santa Barbara (UCSB), led by Professor Craig Montell wanted to investigate this further. The team used fruit fly larvae to uncover mechanisms underling behavioral changes that are seen when the larvae are subjected to fast and slow increases in temperature.
 
Publishing in Nature Neuroscience, the investigators determined that a fast 25 degree Fahrenheit rise in temperature resulted in a writhing behavioral response in fruit fly larvae. Conversely, when the same change in temperature happened slowly, fewer animals displayed the writhing response and among those that did, the temperature at which the behavior started was higher.
 
"We know a lot about how animals sense large and sudden increases in temperature," said Montell, the Patricia and Robert Duggan Professor of Neuroscience in UCSB's Department of Molecular, Cellular, and Developmental Biology. "They respond to noxious heat by initiating an escape response. But how is it that animals are so much less sensitive to the same hot temperature when the change is really slow?"
 
Montell and his team were able to answer that question. They found the themosensory neurons of the brain that sense the rate at which temperature changes. That led them to discover the mechanism that behind the process.
 
"When there is a really rapid change in temperature, you want to protect the brain, particularly in fly larvae because they're cold-blooded and their body temperature equilibrates to the outside," Montell explained. "If their brains feel a rapid increase in temperature, that stimulates the writhing response."
 
The researchers learned that a particular receptor is responsible for sensing fast temperature changes. The cell has a sensor of cellular temperature, a molecule called TRPA1. The activation of TRP1A is dependent, however, on the rate of changes in temperature. A rapid increase in temperature resulted in a fast activation of TRPA1, exciting the thermosensory neurons. TRP1A was less activated by a slow increase in temperature.
 
"There's a feedback mechanism that turns off this protein as quickly as it's turned on," Montell said. "When it's turned on quickly, it stimulates the pathway to cause the writhing response. But when the process occurs slowly, the on and off mechanisms cancel each other out."
 
"We think similar mechanisms occur in other animals—for example, the frog," Montell continued. The investigators suggest that the sensation of rapid changes in temperature could help an organism respond quickly to a dangerous change in its environment.
 
"It could be that related mechanisms affect temperature-sensitive TRP channels in humans as well. Ultimately, if a common mechanism is conserved across species, our findings may provide insight into how different animals adapt to the rate of temperature change," concluded Montell.

Sources: Phys.org via UCSB, Nature Neuroscience
 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 20, 2019
Cell & Molecular Biology
OCT 20, 2019
Variations in tRNA Genes are More Common Than Thought
It had been thought that there was not much of interest happening in the genes that code for tRNA; new work changes that view....
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
A Human Developmental Clock in a Dish
The events that occur during early mammalian development have tone carefully orchestrated, and timed perfectly....
OCT 20, 2019
Cell & Molecular Biology
OCT 20, 2019
Why TB and HIV Occur Together So Often
Tuberculosis (TB) is among the world’s leading causes of death, and is the primary cause of death in people who are HIV-positive....
OCT 20, 2019
Immunology
OCT 20, 2019
New Observations of a Cancer Transcriptase
New research shows a transcriptase that helps time cell death varies in expression, and is unusually localized, in cancer cells.  The transcriptase, T...
OCT 20, 2019
Neuroscience
OCT 20, 2019
Do Mirror Neurons Help Us Feel Empathy?
In 2000, prominent neuroscientist V. S. Ramachandran wrote that mirror neurons would do for psychology what DNA did for biology (Ramachandran: 2000). Altho...
OCT 20, 2019
Cell & Molecular Biology
OCT 20, 2019
New Technique Can Trace the Activity of Individual Neurons
Researchers are learning more about why bright light wakes us up....
Loading Comments...