OCT 22, 2016 3:22 AM PDT

Some Animals Must Sense Rates of Temperature Change; Mechanism Found

WRITTEN BY: Carmen Leitch

Old experiments have led to the notion that frogs boiled gradually will not try to escape, while a sudden dunk in hot water will result in the frog jumping out. While the truth of that can be debated, it is known that many animals, including humans, are not only sensitive to temperature but also the rate at which temperature changes. It’s not well understood exactly why, however.
 

Growling grass frog / Credit: Wikimedia


Researchers at the University of California Santa Barbara (UCSB), led by Professor Craig Montell wanted to investigate this further. The team used fruit fly larvae to uncover mechanisms underling behavioral changes that are seen when the larvae are subjected to fast and slow increases in temperature.
 
Publishing in Nature Neuroscience, the investigators determined that a fast 25 degree Fahrenheit rise in temperature resulted in a writhing behavioral response in fruit fly larvae. Conversely, when the same change in temperature happened slowly, fewer animals displayed the writhing response and among those that did, the temperature at which the behavior started was higher.
 
"We know a lot about how animals sense large and sudden increases in temperature," said Montell, the Patricia and Robert Duggan Professor of Neuroscience in UCSB's Department of Molecular, Cellular, and Developmental Biology. "They respond to noxious heat by initiating an escape response. But how is it that animals are so much less sensitive to the same hot temperature when the change is really slow?"
 
Montell and his team were able to answer that question. They found the themosensory neurons of the brain that sense the rate at which temperature changes. That led them to discover the mechanism that behind the process.
 
"When there is a really rapid change in temperature, you want to protect the brain, particularly in fly larvae because they're cold-blooded and their body temperature equilibrates to the outside," Montell explained. "If their brains feel a rapid increase in temperature, that stimulates the writhing response."
 
The researchers learned that a particular receptor is responsible for sensing fast temperature changes. The cell has a sensor of cellular temperature, a molecule called TRPA1. The activation of TRP1A is dependent, however, on the rate of changes in temperature. A rapid increase in temperature resulted in a fast activation of TRPA1, exciting the thermosensory neurons. TRP1A was less activated by a slow increase in temperature.
 
"There's a feedback mechanism that turns off this protein as quickly as it's turned on," Montell said. "When it's turned on quickly, it stimulates the pathway to cause the writhing response. But when the process occurs slowly, the on and off mechanisms cancel each other out."
 
"We think similar mechanisms occur in other animals—for example, the frog," Montell continued. The investigators suggest that the sensation of rapid changes in temperature could help an organism respond quickly to a dangerous change in its environment.
 
"It could be that related mechanisms affect temperature-sensitive TRP channels in humans as well. Ultimately, if a common mechanism is conserved across species, our findings may provide insight into how different animals adapt to the rate of temperature change," concluded Montell.

Sources: Phys.org via UCSB, Nature Neuroscience
 

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 21, 2021
Cancer
Exercise: A Secret Weapon to Combat Prostate Cancer?
OCT 21, 2021
Exercise: A Secret Weapon to Combat Prostate Cancer?
Exercise oncology is an evolving science that considers the addition of physical activity regimens to the treatment ...
OCT 25, 2021
Space & Astronomy
Spaceflight Seems to Raise Levels of Circulating Cell-Free Mitochondrial DNA
OCT 25, 2021
Spaceflight Seems to Raise Levels of Circulating Cell-Free Mitochondrial DNA
Spaceflight is being marketed as a tourist opportunity for extremely wealthy people, and lengthy space missions that cou ...
NOV 03, 2021
Genetics & Genomics
Gene Therapy Could Make Parkinson's Drug More Effective
NOV 03, 2021
Gene Therapy Could Make Parkinson's Drug More Effective
In Parkinson's disease, neurons that produce the neurotransmitter dopamine in a part of the brain called the substantial ...
NOV 07, 2021
Cell & Molecular Biology
How Cells Use Messengers to Signal to One Another
NOV 07, 2021
How Cells Use Messengers to Signal to One Another
In recent years, researchers have discovered the importance of a kind of antenna that is found on most cells, a structur ...
NOV 19, 2021
Health & Medicine
Introducing the Human Proteoform Project
NOV 19, 2021
Introducing the Human Proteoform Project
First, there was the Human Genome Project, a monumental, international effort to map the entire human genome down to its ...
NOV 23, 2021
Microbiology
The Malaria Parasite Gives Its Mosquito Host Advantages
NOV 23, 2021
The Malaria Parasite Gives Its Mosquito Host Advantages
When the parasite Plasmodium falciparium is transmitted from mosquitoes to humans, it causes malaria. So what does it do ...
Loading Comments...