NOV 08, 2016 2:54 PM PST

Algorithm Created to Engineer Cellular Behavior

WRITTEN BY: Carmen Leitch
Engineers and scientists have long been trying to use cells to manufacture molecules that humans need, like biofuel or medicine. Am algorithm created by a computer scientist aims to improve on that technology, and it could aid gene therapy, stem cell research and energy production.
 
An engineer at Washington University in St. Louis developed an algorithm that suggests gene to remove from certain cells, such as yeast, to get them to perform a normal activity in a different environment or situation. / Credit: Washington University in St. Louis
 
The algorithm, developed by Michael Brent, the Henry Edwin Sever Professor of Engineering in the School of Engineering & Applied Science, is called NetSurgeon. It selects genes that need to be removed or silenced in the genome of a cell in order to coax it to perform a desired function, typically a normal thing the cell does but under atypical circumstances. Baker’s yeast cells, for example, will usually make a large amount of alcohol when fed a certain type of sugar –from edible corn kernels. When the NetSurgeon algorithm was applied in this case, the genetic alteration it recommended made the cells produce more alcohol when given a different kind of sugar from the inedible parts of corn plants. The research was published in the Proceedings of the National Academy of Sciences.
 
"Yeast have been engineered to make alcohol out of xylose, a type of sugar found in the woody parts of plants, but they don't do it very well," explained Brent. "We think the problem is not that they can't do it, but that they don't want to. So we have to convince them by making them use the same set of genes they use when they're fed sugar from corn kernels. We sometimes think about this as causing the yeast to 'hallucinate' that they are in a sugar they like to turn into alcohol.”
 
"Ultimately, what we want to impact is the behavior of the cells and the ways they respond to things," Brent continued. "One of the ways they respond is by changing the mix of cellular parts they are making. We're trying to engineer the cells to change the mix of parts to do something associated with desirable behaviors, like becoming a liver cell or producing a biofuel. We call this 'transcriptome engineering,' because it changes the control circuits in order to change the production of many parts at once, rather than focusing on one part at a time."
 
The transcriptome is the genes that are being expressed in a cell or organism; it is the total messenger RNA that is present in a cell. Brent and his research team study transcriptional regulatory networks – the mechanism of control over gene activity in a cell, and how that activity changes based on environmental conditions. Transcription factors, which function to turn genes on and off, are very important parts of these cellular networks. NetSurgeon proposes which transcription factors to remove based on the desired result for the cell. "If you have a stem cell and want it to be a liver cell, you want to cause it to turn its genes up and down to match the levels found in a liver cell," Brent said.
 
Although his research focuses on the response of yeast to excess sugar, Brent noted that this is a broadly applicable technique that could be applied to any organism. "Many of the same circuits exist in human cells and are even drug targets," Brent concluded.
 
He has made it available as open source software at mblab.wustl.edu.
 
Source: Phys.org via Washington University in St. Louis, PNAS
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 12, 2020
Cell & Molecular Biology
MAR 12, 2020
Zika Virus Used to Treat Advanced Tumors in Dogs
Researchers found a use for the zika virus; they treated advanced tumors of the central nervous system of three elderly ...
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of criti ...
MAR 27, 2020
Genetics & Genomics
MAR 27, 2020
Expanding the Genomic Regions That Can Be Targeted With CRISPR
CRISPR gene-editing technology has sparked a revolution in biomedical research and is poised to have far-reaching applic ...
APR 08, 2020
Cell & Molecular Biology
APR 08, 2020
Fruit Peel Molecule May Help Treat Multiple Sclerosis
Current MS treatments must be applied early on in the disease to be effective, and do not reverse the damage that's alre ...
APR 11, 2020
Cardiology
APR 11, 2020
Cell Transplant Repairs Brain After Stroke
Using cell therapy, researchers from Lund University in Sweden have successfully restored mobility and a sense of touch ...
MAY 26, 2020
Immunology
MAY 26, 2020
The Hunt for Rare Immune Cells, to InfinityFlow and Beyond
The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopu ...
Loading Comments...