DEC 13, 2016 10:11 AM PST

Honeybee Memory Epigenetics Finding may aid Alzheimer

WRITTEN BY: Carmen Leitch

The human brain is incredibly complex and still not well understood; as such models for studying brain function often involve more simple organisms, like the honeybee. Such animals often have more going on in their heads than you might think. A new report published in the journal Frontiers in Molecular Neuroscience used the honeybee to delve deeper into how long-term memories are formed.

Credit: Frontiers Blog

"Honeybees have an amazing capacity to learn and remember," said Dr Stephanie Biergans, first author of the study and researcher at the University of Queensland, Australia. "They can count up to four, and orientate themselves by learning patterns and landmarks. They are also social insects that interact, teach and learn, making them successful foragers. Bees remember how to find a food source, how good the source was, and how to return to the hive."

Honeybees form memories in a way that seems to be similar to that of humans; because they are bees though, they have a smaller genome and a much more fundamental brain.

When memories are created, scientists know that changes occur in the brain on a physical level. Neural connections are made or altered, and neuronal activity undergoes molecular changes. All of those changes work together to embody our long-term memory. Some of those molecular changes occur at the level of genes. Alterations to those genes, epigenetic modifications, can affect gene expression – whether or not a gene is made into a protein, and how much of it is made. This work studied how those epigenetic modifications function in memory.

"We show that DNA methylation is one molecular mechanism that regulates memory specificity and re-learning, and through which experiences of the organism could be accumulated and integrated over their lifetime," said Biergans.

"We knew that DNA methylation is an epigenetic process that occurs in the brain and is related to memory formation. When we block this process in honeybees it affects how they remember,” Biergans explained.

The researchers used two different groups of honeybees that had been taught to expect sugar when exposed to a particular scent; one group learned over time, and was exposed to the smell and the sugar many different times while the other was exposed only once. The scientists utilized a compound that would stop DNA methylation, one type of epigenetic modification, in some bees of both groups. The memory formation of all of the groups was then compared.

"When the bees were presented with sugar and a smell many times together, the presence of DNA methylation increased memory specificity - they were less responsive to a novel odor. On the other hand, when only introduced to the combination once, DNA methylation decreased specificity," Biergans reported.

Their result makes sense for a foraging honeybee, that would not need to remember how a flower smells if that flower it the sole source of food. But if other flowers with different smells are present, then it’s better to see which might be the best source, and to then remember which it is.

The same kind of epigenetic change happens in the human brain as well. These findings could be very helpful to the study of memory problems in people.

"By understanding how changes to the epigenome accumulate, manifest and influence brain function, we may, in the future, be able to develop treatments for brain diseases that also develop over a lifetime. There is thought to be a genetic predisposition for some conditions, such as Alzheimer's and dementia, but in many cases environmental factors determine whether the disease will manifest," Biergans concluded.

Sources: AAAS/Eurekalert! via Frontiers Blog, Frontiers in Molecular Neuroscience

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 29, 2018
Neuroscience
OCT 29, 2018
Gut: a second brain and novel therapeutic target
Undersatnding the role of gut microbiome in disease pathologies and targetting them for potential treatment strategies....
NOV 01, 2018
Cell & Molecular Biology
NOV 01, 2018
Researchers Link Parkinson's Disease and the Appendix
When a person's appendix is removed early in life, it reduces their chances of getting Parkinson's disease....
NOV 05, 2018
Neuroscience
NOV 05, 2018
Stress: Men Vs. Women
Undersatnding the gender specific differences in response to stress...
NOV 19, 2018
Neuroscience
NOV 19, 2018
Researchers identify neural pathways that control behavioral responses to noxious stimuli
Behavioral responses to the pain perception could range from reflexive withdrawal to more complex behaviors to avoid or decrease the pain. Neurons in the lateral division of the parabrachial...
NOV 26, 2018
Genetics & Genomics
NOV 26, 2018
Researcher Claims to Have Genetically Engineered Human Babies
Shocking the scientific community, a Chinese scientist announced that he edited human embryos, and twins have been born....
NOV 27, 2018
Cell & Molecular Biology
NOV 27, 2018
Why Screens can Interfere With Sleep
Most of us spend a lot of time looking at some type of screen, whether it's a laptop, a phone, or another device....
Loading Comments...