MAR 12, 2015 09:43 AM PDT

Pinpointing the Origins of Photosynthesis

WRITTEN BY: Judy O'Rourke
One of the key areas in all of biology is the evolution of photosynthesis. Some species of single celled cyanobacteria, through photosynthesis, forever changed the atmosphere of the early Earth by filling it with oxygen, allowing a huge expansion in terms of what life was possible on the planet.

Cardona et al, in the advanced online edition of Molecular Biology and Evolution, have examined the evolution origins of the D1 protein in cyanobacteria, which forms the heart of Photosystem II, the oxygen-evolving machine of photosynthesis. Photosystem II's role is to procure electrons for photosynthesis and it does this by ripping them out of water releasing oxygen as a byproduct. The research team selected all known D1 sequences from cyanobacteria and also representatives from algae and plants to compare the protein sequence variation.

"I think the most significant implication of the paper is that now the evolution of biological water oxidation can be addressed experimentally," says Tanai Cardona, PhD. "It is quite possible that in extant cyanobacteria today Photosystem II, using these ancestral forms of D1, could display traits and perform chemistry that resemble those of transitional forms before the evolution of efficient water splitting as we understand it today. The study of this alternative photosystems will not only give insights into the evolution of the process but could also provide clues on the environmental conditions where oxygenic photosynthesis first arose billions of years ago in the early Earth."

The researchers showed that D1 exists in at least 5 major forms, some of which could have originated before the evolution of water oxidation. This allowed the team to make a detailed evolutionary tree and to propose a sequence of events for the origin of water splitting in Photosystem II at an unprecedented level of detail. The earliest diverging form of D1 has maintained ancestral characteristics and was found in the recently sequenced genome of Gloeobacter kilaueensis JS-1 (found in a lava cave in Hawaii), probably one of the most primitive type of cyanobacteria known

A remarkable evolutionary innovation occurred around 3.2 to 2.7 billion years ago in a bacterial ancestor of cyanobacteria, made possible by key transitionary forms of D1. Their evidence suggests that water splitting could have evolved relatively fast after just a few changes to the ancestral D1 protein of Photosystem II. This ancestor contained several forms of D1 and may have been a lot more complex than previously thought, already highly specialized for the solar-powered oxidation of water.

The article is titled "Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria."

[Source: Molecular Biology and Evolution (Oxford University Press)]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
AUG 23, 2018
Microbiology
AUG 23, 2018
Environmental Nanoparticles May be Harming Cells
Researchers suggest that we take time to learn more about the synthetic chemicals we're releasing into the environment....
AUG 31, 2018
Videos
AUG 31, 2018
One Class of Diabetes Drugs Can Increase Risk of Genital Gangrene
The FDA has issued a serious warning about a group of type 2 diabetes drug called sodium-glucose cotransporter-2 (SGLT2) inhibitors....
SEP 17, 2018
Microbiology
SEP 17, 2018
Detecting Dangerous Latent Viruses
Evidence mounts that viruses play a role in disease development....
OCT 02, 2018
Drug Discovery
OCT 02, 2018
Compound Found In Fruits and Vegetables May Be The Next Anti-Aging Drug
According to early research published in Nature Medicine, it was found possible to increase the longevity of damaged cells, extend the lifespan, and improv...
OCT 09, 2018
Drug Discovery
OCT 09, 2018
'Copper Antibiotic Peptide' Effective in Eradicating Tuberculosis
The bacterium responsible for Tuberculosis has found a way to avoid antibiotics by hiding inside the macrophages which are the specific immune cells that a...
OCT 10, 2018
Genetics & Genomics
OCT 10, 2018
Using CRISPR in Utero to Treat Disease
Researchers have used a mouse model to show that it's possible to treat an illness before sickness occurs....
Loading Comments...