FEB 10, 2014 12:00 AM PST

The Tasting Mechanism of Honeybees

WRITTEN BY: Jen Ellis
2 30 1301
If we asked you how honeybees taste, what would you say? You might say "awful" or "a bit like chicken, once you get past the stingers." If we then asked you how honeybees tasted their food, would you know the answer? Believe it or not, it's the sense of touch.

Honeybees taste things by using sensitive receptor nerve cells contained in hair-like structures known as sensilla. In the honeybees' case, sensilla may be found on the antennae, mouth and the tarsi (end portions of the honeybee's legs). Scientists have known for some time that honeybees taste their food using their tarsi, but how that information is processed and used to distinguish different tastes is not well known.

In order to study the taste mechanism, researchers from the University of Toulouse examined the reactions of hundreds of honeybees when salty, sugary or bitter solutions were exposed to the tarsi. Their results were published recently in the journal Frontiers in Behavioral Neuroscience.

Upon the honeybees exposure to various solutions, the research team monitored the tongues of the bees - retracting the tongue means a honeybee did not like the taste and would not attempt to drink the solution; extending the tongue means a honeybee liked the taste and was preparing to drink the solution. Not surprisingly, the team discovered that just like human children, honeybees are extremely sensitive to sugar and are highly attracted to it. The bees extended their tongues to drink dilute sucrose solutions as well as concentrated ones.

The team also discovered some new insights into specific receptor locations on the tarsi and how the information was processed. Nerve cell activity was measured in different areas of the tarsi to determine more specific areas of sensitivity. For example, the double claw that forms the end of the tarsi was found to be extremely sensitive to sugary solutions, while the segments immediately before the claws (the tarsomeres) had a higher sensitivity to salty solutions. Why the tarsi are so sensitive is not fully understood (since the other sense organs of honeybees contain more sensilla than the tarsi do) but it is likely an adaptive mechanism to help the honeybees distinguish the presence of nectar on the plants they land on.

Since both tarsi are involved in the tasting process, the research team wondered what would occur if each tarsus received contradicting information - for example sugar solution on one side but water on the other? They discovered that it's a literal race. While the honeybee processes the information it receives from both tarsi, it gives added weight to the side that the honeybee tastes first. When sucrose was detected first, the honeybee extended its tongue and ignored the other input, but if the first input was less attractive, the honeybee was less likely to extend its tongue for the sucrose once it detected its presence.

This paper claims to be the first integrative study on the taste mechanism of honeybees using both a behavioral and electrophysiological approach. It seems likely that this technique will be put to greater use in future insect research.
About the Author
You May Also Like
JUN 13, 2018
Cell & Molecular Biology
JUN 13, 2018
Concerns About the CRISPR/Cas9 Gene Editor
Hailed as a revolutionary technique that had many potential applications, two new studies show that we should proceed with caution.
JUN 25, 2018
Immunology
JUN 25, 2018
An Emerging Chronic Food Allergy: Eosinophilic Esophagitis
There’s a new food allergy in town, and it seems that children with existing allergies at an increased risk of developing it. From the Children&rsquo
JUN 26, 2018
Cell & Molecular Biology
JUN 26, 2018
Growing Closer to 3D Printed Organs
One company is using 3D printing to build human tissues; they've now made a structure with functional capillaries.
JUL 12, 2018
Cell & Molecular Biology
JUL 12, 2018
New and Improved Ways to Create Stem Cells
New techniques that can make stem cells could have a big impact on therapeutics.
JUL 19, 2018
Videos
JUL 19, 2018
The Transition to Multicellular Life May Have Been Simple
It may have been relatively easy for complex organisms to form from one-celled microbes, researchers suggest.
JUL 21, 2018
Genetics & Genomics
JUL 21, 2018
Designer Cells Sense & Destroy MRSA
Staphylococcus aureus is thought to lead to over 11 million visits to the doctor and the ER every year in the US alone.
Loading Comments...