FEB 22, 2017 05:23 PM PST

Algorithm can Predict Stem Cell Fate

WRITTEN BY: Carmen Leitch

Stem cells are still not well understood, but there is a lot of interest in knowing more about them for many reasons; they have tremendous therapeutic potential, they are critical players in development, and they have many unique characteristics. Scientists have now applied machine learning to hematopoietic stem cells to learn more about the decisions that lead to their fate as a more specialized blood cell. The researchers are featured in this video below explaining the work, which was published in Nature Methods.

"A hematopoietic stem cell's decision to become a certain cell type cannot be observed. At this time, it is only possible to verify the decision retrospectively with cell surface markers," explained Dr. Carsten Marr, head of the Quantitative Single Cell Dynamics Research Group at the Helmholtz Zentrum München's Institute of Computational Biology (ICB).

Using deep learning, which simulates human learning in a computational framework, Marr's team have created an algorithm that predicts stem cell fate decisions. "Deep Neural Networks play a major role in our method," said Marr. "Our algorithm classifies light microscopic images and videos of individual cells by comparing these data with past experience from the development of such cells. In this way, the algorithm 'learns' how certain cells behave."

A collaborator, Timm Schroeder at ETH Zurich, worked to film stem cells. With the data that was gathered on appearance and speed, the software could track and remember behavioral patterns, which led to the ability to make predictions. "Compared to conventional methods, such as fluorescent antibodies against certain surface proteins, we know how the cells will decide three cell generations earlier," said ICB scientist Dr. Felix Buggenthin, who was co-first author of the work, along with Dr. Florian Büttner.

Marr explained the potential applications and benefits of the work; "Since we now know which cells will develop in which way, we can isolate them earlier than before and examine how they differ at a molecular level. We want to use this information to understand how the choices are made for particular developmental traits."

The scientists are not limiting themselves to hematopoietic stem cells. "We are using Deep Learning for very different problems with sufficiently large data records," said Prof. Dr. Dr. Fabian Theis, ICB director and holder of the Mathematical Modeling of Biological Systems Chair at the TUM, who was study leader with Carsten Marr. "For example, we use very similar algorithms to analyze disease-associated patterns in the genome and identify biomarkers in clinical cell screens."

 

Sources: AAAS/Eurekalert! via Helmholtz Zentrum München, Nature Methods

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 05, 2018
Immunology
NOV 05, 2018
Amino Acid Helps to Promote T cells
Scientists at Vanderbilt show that the amino acid glutamine can contribute to a subset of T cell function and activation...
NOV 10, 2018
Videos
NOV 10, 2018
Engineering Viable Offspring From Same-sex Mouse Parents
Using a special kind of stem cell and genetic engineering, researchers have learned more about what's possible in reproduction....
NOV 19, 2018
Genetics & Genomics
NOV 19, 2018
Revealing an Unexpected Role for RNA in DNA Repair
When both strands of DNA break, it must be repaired or the cell will die....
NOV 20, 2018
Cardiology
NOV 20, 2018
What Makes Some Fats Bad
You may recall hearing at some point that there are “good fats“ and “bad fats.“ What does that really mean? But what makes one type...
DEC 08, 2018
Cardiology
DEC 08, 2018
Adaptations Of The Heart To Chronic Exercise
We have all heard that exercise is good for us, particularly for the heart, but many don’t understand precisely how regular, long-term activity affec...
DEC 16, 2018
Health & Medicine
DEC 16, 2018
Important Biomedical Research At Risk Of Being Defunded
In September the Department of Health and Human Services (D.H.H.S.) released a statement citing “serious regulatory, moral and ethical considerations...
Loading Comments...