MAR 14, 2017 12:23 PM PDT

3D Structure of Active DNA is Revealed

WRITTEN BY: Carmen Leitch

Researchers have revealed the three dimensional arrangement of intact genomes in individual mammalian cells, illustrating that the DNA of all chromosomes folds in a specific way inside of the nucleus of cells. Scientists at the University of Cambridge and the MRC Laboratory of Molecular Biology utilized powerful imaging techniques and took around 100,000 measurements for this analysis of the genome in a mouse embryonic stem cell. 

Chromosomes only take on their typically known, X shape when the cell is dividing. Knowing how the genome is arranged during other critical times will give scientists insight into gene regulation and interaction, and could provide insight into processes like development. Understanding how these processes work under normal conditions can also help understand dysfunction and abnormalities. The researchers have created videos to animate their findings, which are reported in Nature.

The structure has been animated in accompanying videos, which illustrate the whole genome from a mouse embryonic stem cell. In the video above, the 20 different chromosomes of the cell have been colored differently. The second video, below, highlights regions of the chromosomes where there is gene activity by coloring them in blue, while areas that associate with a part of the nucleus, the nuclear lamina, are highlighted in yellow. It's thus possible to see an arrangement placing the most active areas go the genome towards the interior, and are separate from less active areas, which interact with the nuclear lamina. It was observed that this arrangement is consistent from cell to cell, suggesting that this organization could be important to other cellular processes like the three dimensional arrangement of the genome. It would then also likely be playing a role in DNA replication and cell division. 

"Knowing where all the genes and control elements are at a given moment will help us understand the molecular mechanisms that control and maintain their expression," said Professor Ernest Laue, whose research team at Cambridge's Department of Biochemistry worked to develop this method. 

"Visualizing a genome in 3D at such an unprecedented level of detail is an exciting step forward in research and one that has been many years in the making. This detail will reveal some of the underlying principles that govern the organization of our genomes - for example how chromosomes interact or how structure can influence whether genes are switched on or off. If we can apply this method to cells with abnormal genomes, such as cancer cells, we may be able to better understand what exactly goes wrong to cause disease, and how we could develop solutions to correct this," commented Dr Tom Collins of Wellcome's Genetics and Molecular Sciences team.

"In the future, we'll be able to study how this changes as stem cells differentiate and how decisions are made in individual developing stem cells. Until now, we've only been able to look at groups, or 'populations', of these cells and so have been unable to see individual differences, at least from the outside. Currently, these mechanisms are poorly understood and understanding them may be key to realizing the potential of stem cells in medicine," concluded Laue.

 

Sources: AAAS/Eurekalert! via University of Cambridge, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 05, 2020
Microbiology
MAR 05, 2020
Researchers Learn How Gut Microbes Can Promote Heart Disease
The microbes in our gastrointestinal tract, collectively known as the gut microbiome, have a powerful impact on our heal ...
MAR 08, 2020
Cell & Molecular Biology
MAR 08, 2020
How a Decoy Strategy Helps Cells Evade the Effects of Pathogens
Scientists have identified a strategy used by cells to shield them from the toxins that can be released by dangerous bac ...
MAR 25, 2020
Clinical & Molecular DX
MAR 25, 2020
A coronavirus testing kit with glow-in-the-dark Mango?
A group of Canadian researchers is responding to a desperate need for COVID-19 diagnostic kits with their fluorescent im ...
MAR 28, 2020
Cancer
MAR 28, 2020
The Not So Minor Genetic Players in Head and Neck Cancers
Head and neck squamous cell carcinomas (HNSCC) are among the most prevalent cancers among smokers, linked to alcohol con ...
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Researchers Remotely Trigger the Release of Hormones
It may one day be possible to treat hormone-related diseases using this method.
MAY 12, 2020
Genetics & Genomics
MAY 12, 2020
Learning More About Why Some Diseases Have a Sex Bias
The biological differences between men and women go beyond the things we're aware of like the sex chromosomes and hormon ...
Loading Comments...