MAR 14, 2017 12:23 PM PDT

3D Structure of Active DNA is Revealed

WRITTEN BY: Carmen Leitch

Researchers have revealed the three dimensional arrangement of intact genomes in individual mammalian cells, illustrating that the DNA of all chromosomes folds in a specific way inside of the nucleus of cells. Scientists at the University of Cambridge and the MRC Laboratory of Molecular Biology utilized powerful imaging techniques and took around 100,000 measurements for this analysis of the genome in a mouse embryonic stem cell. 

Chromosomes only take on their typically known, X shape when the cell is dividing. Knowing how the genome is arranged during other critical times will give scientists insight into gene regulation and interaction, and could provide insight into processes like development. Understanding how these processes work under normal conditions can also help understand dysfunction and abnormalities. The researchers have created videos to animate their findings, which are reported in Nature.

The structure has been animated in accompanying videos, which illustrate the whole genome from a mouse embryonic stem cell. In the video above, the 20 different chromosomes of the cell have been colored differently. The second video, below, highlights regions of the chromosomes where there is gene activity by coloring them in blue, while areas that associate with a part of the nucleus, the nuclear lamina, are highlighted in yellow. It's thus possible to see an arrangement placing the most active areas go the genome towards the interior, and are separate from less active areas, which interact with the nuclear lamina. It was observed that this arrangement is consistent from cell to cell, suggesting that this organization could be important to other cellular processes like the three dimensional arrangement of the genome. It would then also likely be playing a role in DNA replication and cell division. 

"Knowing where all the genes and control elements are at a given moment will help us understand the molecular mechanisms that control and maintain their expression," said Professor Ernest Laue, whose research team at Cambridge's Department of Biochemistry worked to develop this method. 

"Visualizing a genome in 3D at such an unprecedented level of detail is an exciting step forward in research and one that has been many years in the making. This detail will reveal some of the underlying principles that govern the organization of our genomes - for example how chromosomes interact or how structure can influence whether genes are switched on or off. If we can apply this method to cells with abnormal genomes, such as cancer cells, we may be able to better understand what exactly goes wrong to cause disease, and how we could develop solutions to correct this," commented Dr Tom Collins of Wellcome's Genetics and Molecular Sciences team.

"In the future, we'll be able to study how this changes as stem cells differentiate and how decisions are made in individual developing stem cells. Until now, we've only been able to look at groups, or 'populations', of these cells and so have been unable to see individual differences, at least from the outside. Currently, these mechanisms are poorly understood and understanding them may be key to realizing the potential of stem cells in medicine," concluded Laue.

 

Sources: AAAS/Eurekalert! via University of Cambridge, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 29, 2020
Cell & Molecular Biology
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
SEP 29, 2020
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
Researchers have used imaging tools to show that Parkinson's disease may actually be two different diseases, one that st ...
OCT 01, 2020
Cancer
Understanding in vivo Metabolomics: C13 Isotope Studies
OCT 01, 2020
Understanding in vivo Metabolomics: C13 Isotope Studies
One key to understanding cancer metabolomics lies in the ability to accurately replicate the natural environment of the ...
OCT 13, 2020
Immunology
Why Halloween Is Extra Scary for Kids With Peanut Allergies
OCT 13, 2020
Why Halloween Is Extra Scary for Kids With Peanut Allergies
A recent study showed that there is an 85 percent spike in peanut allergy anaphylaxis cases on Halloween. The study, per ...
NOV 08, 2020
Cell & Molecular Biology
Mouth Spray for Epidermolysis Bullosa in Development
NOV 08, 2020
Mouth Spray for Epidermolysis Bullosa in Development
Epidermolysis Bullosa (EB) is a rare genetic disorder that makes the skin incredibly fragile; it forms blisters and can ...
NOV 14, 2020
Microbiology
The Structure of a Bacteriophage DNA Tube is Revealed
NOV 14, 2020
The Structure of a Bacteriophage DNA Tube is Revealed
Some viruses only infect bacteria; they care called bacteriophages or phages for short. As antibiotic-resistant bacteria ...
NOV 19, 2020
Cell & Molecular Biology
A Different View of Chromosomes
NOV 19, 2020
A Different View of Chromosomes
Many of us are familiar with typical diagrams of a chromosome, which is usually drawn like a stubby X. While that pictur ...
Loading Comments...