APR 04, 2017 6:13 PM PDT

Melanoma Captured in Action

WRITTEN BY: Carmen Leitch

Melanoma is the most serious skin cancer and can be quite aggressive, as seen in the following video. Researchers at the University of Iowa captured them as they invaded a gel, quickly joining up with other tumor cells and forming tumors. Reporting in PLOS One, computer software helped the investigators study the formation of melanoma and breast tumors. It was found that there are similarities in the way the two tumor types behave as the cells join up and build tumors. 

“It upholds our hypothesis that coalescence is so similar that there’s got to be the same molecules and mechanisms that do it, and we may be able to find a drug that shuts tumor formation down without being toxic to healthy cells in the body,” said Biology Professor David Soll, the corresponding author of the paper.

Healthy skin cells and melanoma cells were both tracked by the scientists in real time - these videos from the Soll lab show melanoma cells, above, while healthy cells are shown below. The melanoma cells move continuously, and appear to expand in all directions. They also divide into more cells and join up into clusters together; the lab showed that one cell covered a space three times as large as itself to meet up with other cells in only four hours. Another test showed an 80 percent accretion rate: in only 72 hours, 24 cells or small cell clusters had coalesced as a cancerous tumor.

Soll’s team has previously demonstrated that human breast cancer cells can extend a cable of sorts that helps to build bridges between cells and aggregate them. Melanoma cells behave in a similar fashion, but with some differences in speed. Melanoma cells can be “fast as lightning,” Soll said. “They don’t sit still. They’ve got ants in their pants.”

Breast cancer cells, however, are slower to get moving and building tumors. In their previous PLOS One report, Soll’s team learned that breast cancer cells wait an average of 100 hours and dividing into more cells during that time, before creatinging “clonal islands,” which are small clusters that slowly join and form large tumors.

Soll suggested that melanoma cells may move around a lot in contrast because of their evolutionary roots. Skin cells that form the pigment melanin, called melanocytes, are derived from a type of cell that is created in the spinal column, neural crest cells. Once the specialized melanocytes are created, they must travel through the tissue to settle in their destination, the top layer of the skin. “They’re professional crawlers,” Soll explained. “They were born to move.”

Melanoma cells move quickly, extending cables to reel in other cells and form tumors. The panels show how individual melanoma cells came together to build a tumor in just four hours. / Credit: David Soll laboratory, University of Iowa

The scientists have appeared to show that melanoma cells have mobility that is similar to that of melanocytes. However, the melanoma cells are more like the cables of breast cancer cells as they come together, reeling in other cells or cell clusters. Soll was intrigued, and went on to screen monoclonal antibodies to find one that would be effective against tumor development. Two were found, anti-beta 1 integrin/(CD29) and anti-CD44, which halted tumor creation in both types of cancer.

“What’s so cool is the same drug that stops breast cancer cells from undergoing coalescence also stops melanoma cells from undergoing coalescence, despite these cancers’ whole history being different,” said Soll. “That means there’s a commonality despite the different origins. And that also means there might be a magic bullet (to stop tumor formation) for all cancers.”

 

Sources: AAAS/Eurekalert! via University of Iowa, PLOS One

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
Household Dust Samples Found to Contain Potentially Toxic LCD Chemicals
Our technology may be impacting our health in ways we did not realize....
DEC 20, 2019
Genetics & Genomics
DEC 20, 2019
Can We Cure Down's Syndrome with Gene Therapy?
Down’s Syndrome (DS) is a genetic disorder brought on by the presence of all of part of a third copy of chromosome 21. Linked to delays in physical g...
JAN 28, 2020
Cell & Molecular Biology
JAN 28, 2020
A Rare Genetic Disorder is Effectively Treated With Modified Stem Cells
A clinical trial used stem cell gene therapy to treat a rare genetic disorder called X-CGD. Image credit: UCLA Broad Stem Cell Research Center/Nature Medicine...
FEB 01, 2020
Cell & Molecular Biology
FEB 01, 2020
Immunity in the Gut Ramps Up Around Mealtimes
Scientists have found that our immune system benefits when we eat regular meals....
FEB 02, 2020
Cell & Molecular Biology
FEB 02, 2020
New T Cell Therapy is a Universal Approach to Target Cancer
For years, researchers have been trying to harness the power of the assassins of the immune system - killer T cells....
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive protein on the surface of T cells and t...
Loading Comments...