MAY 24, 2017 4:28 PM PDT

Neutrons Enable Nanoscale-level View of a Live Cell Membrane

WRITTEN BY: Carmen Leitch

When researchers look at cells under high magnification, they usually have to look at cells that have been treated with special chemical reagents and are no longer alive. But a team of scientists at the Department of Energy's Oak Ridge National Laboratory has now examined a living cell membrane on a nanoscale. These new techniques using neutron scattering were reported in PLOS Biology and are briefly described in the following video. The work may provide a novel experimental method to study membrane biophysics and might be useful for the interrogation of other cell components as well. It has applications for research on drug and cell membrane interactions, biofuel and membrane, or antibiotic and membrane interactions. 

This was a multidisciplinary undertaking led by biophysicist John Katsaras, chemist Bob Standaert and microbiologist James Elkins and was performed at the High Flux Isotope Reactor and Spallation Neutron Source of the lab, with the bacterium Bacillus subtilis. They showed that there are lipid clusters within the cell membrane, called rafts. It has been suggested that these lipid rafts contribute to signaling between cells and are vital to the functions of the cell. There had been uncertainty, however, about the very existence of lipid rafts that this research aims to settle.

"It became a debate," Katsaras said. "Some people believed they exist, while others believed they didn't. There was a lot of circumstantial evidence that could support either side."

Basically, there wasn’t a good way to see the lipid rafts to prove they were there. Neutron scattering analysis was used in place of light microscopy. Neutrons are not limited in the way that visible light is, and is able to give a view of the cell at the nanoscale. Not only that, it does not damage the cell as it is being observed. Because neutrons don’t carry a charge they are able to penetrate deeply into materials.

Neutron scattering is a valuable technique for studying cell membranes, but signals from the cell's other components such as proteins, RNA, DNA and carbohydrates can get in the way (left). An ORNL team made these other components practically invisible to neutrons by combining specific levels of heavy hydrogen (deuterium) with normal hydrogen within the cell. / Credit: Xiaolin Cheng and Mike Matheson, Oak Ridge National Laboratory/Dept. of Energy

First there were some hurdles to be overcome if the scientists wanted this new tool to work. They needed to use neutrons that would scatter off of lipid molecules and not interact with other parts of the cell, and they had to find a way to tell the difference between various types of lipid molecules. The neutrons in deuterium, an isotope of hydrogen, turned out to be the answer. Unlike the nuclei of common hydrogen gas where there is a proton but no neutron, deuterium has a proton and a neutron in its nucleus. A cell doesn’t distinguish between these two gases, but by using neutron scattering, they look very different. 

A special bacterial strain was engineered by the ORNL researchers - it contained enough deuterium that the structures of the cell would not be visible to neutrons. Then the bacteria were exposed to special lipid molecules that were made to contain fatty acids which had specific levels of deuterium and hydrogen. The bacteria were free to use those lipids to build membranes. If the lipids were randomly distributed in the membrane, the membrane would have a uniform appearance when exposed to neutrons, a grey image of even tone.

But, if lipids tended to group with other lipids that are like themselves, there would not be a uniform grey appearance, the image would have varying tones of lighter and darker grey areas. That turned out to be the case. The patches detected measured under 40 nanometers across, in a membrane roughly 2.4 nanometers thick. The ORNL researchers noted that the engineering they did to achieve internal contrast in live cells utilizing isotopes held potential for use in other research areas. It may open the method of targeted deuteration to other physical techniques such as nuclear magnetic resonance spectroscopy.

"The people who study these things tend to use particular types of probes," Katsaras noted. "They didn't use neutron scattering because it wasn't in the biologist's wheelhouse. Our novel experimental approach opens up new areas of research. For example, you could use the modified bacteria as a platform for investigating antibiotics, because a lot of these antibiotics really are talking to the membrane."

 

Sources: AAAS/Eurekalert! via ORNL, PLOS Biology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 01, 2020
Cell & Molecular Biology
Signaling Waves Help Guide Cells to Heal Wounds
OCT 01, 2020
Signaling Waves Help Guide Cells to Heal Wounds
During development and throughout our lives, cells have to 'know' where to go to form the right structures and properly ...
OCT 13, 2020
Immunology
Why Halloween Is Extra Scary for Kids With Peanut Allergies
OCT 13, 2020
Why Halloween Is Extra Scary for Kids With Peanut Allergies
A recent study showed that there is an 85 percent spike in peanut allergy anaphylaxis cases on Halloween. The study, per ...
OCT 17, 2020
Cell & Molecular Biology
Fat Droplets in Cells Help the Immune System Fight Infection
OCT 17, 2020
Fat Droplets in Cells Help the Immune System Fight Infection
Scientists have found that our immune system has a surprising helper: droplets of fat that sit inside cells.
NOV 06, 2020
Cell & Molecular Biology
The Structure of Proton-Activated Chloride Channels Is Revealed
NOV 06, 2020
The Structure of Proton-Activated Chloride Channels Is Revealed
Scientists have generated structural images of a newly-described class of ion channels that help maintain the balance of ...
NOV 11, 2020
Cell & Molecular Biology
Visualizing a Tumor Suppressor in Action
NOV 11, 2020
Visualizing a Tumor Suppressor in Action
Many types of cells in our bodies are short-lived and need to be replenished. Cell division has to be carefully controll ...
NOV 30, 2020
Cell & Molecular Biology
Can a Scent Motivate Us to Exercise?
NOV 30, 2020
Can a Scent Motivate Us to Exercise?
People are always looking for new ways to get inspired to exercise. Now odor is being proposed as a motivational tool fo ...
Loading Comments...