JUN 17, 2017 09:42 AM PDT

Antibiotics & Resistance Come From the Same Place

WRITTEN BY: Carmen Leitch

When outbreaks occur, scientists trace them back to their source, revealing more about the pathogen and helping us to fight it. Investigators want to do the same with genes that spread resistance to antibiotics, which are expected to present serious challenges to public health in the coming years. Reporting in Nature Communications, scientists have found proof that genes that confer antibiotic resistance come from the same place that antibiotics themselves originate from.

Actinomycetes is in a plate. / Credit: DTU/DTU Biosustain

That has been a hypothesis for over 30 years, and now it has been confirmed. Work performed at The Novo Nordisk Foundation Center for Biosustainability - DTU Biosustain - at Technical University of Denmark has shown that a phylum of bacteria called Actinobacteria give rise to antibiotics that end up treating three quarters of human infections. That group of bacteria also carries genes that enable resistance to antibiotics.

"It has been suspected that pathogens can obtain resistance genes from Actinobacteria for half a century. So now with the 100 percent identical genes we find the smoking gun," said Postdoctoral Fellow Xinglin Jiang of DTU Biosustain.

They also were intrigued to learn that many of the resistance genes carried by gram-negative pathogenic microbes had a high degree of similarity to the genes carried by Actinobacteria; in one example there was an exact match between the genes.

Related: New, Powerful Antibiotic Found in Soil

Because there is not much in common between Actinobacteria and the microbial pathogens, the scientists were not sure how the latter could be acquiring genes from the former. The sequence surrounding the genes revealed more when the investigators analyzed it. Using a novel mechanism called ‘carry back,’ the pathogen couples with the Actinobacteria in a type of ‘sex’ and takes up the resistance gene after the death of the bacteria.

Because Actinobacteria is present in soil everywhere, it’s entirely possible that pathogens encounter it on farms, in waste or anywhere soil is and can easily go through gene transfer. After acquiring a resistance gene, what was once a typical nasty pathogen is transformed into a potentially deadly microbe.

Uncovering the origins of resistance genes is essential to stopping the spread of antibiotic resistance, commented Tilmann Weber, senior researcher at DTU Biosustain. "We can't stop this gene transfer, but when you know, which resistance genes pathogens may harbor, you can personalize the antibiotic treatment. Also, with this knowledge you can try to develop new antibiotics with other properties that the pathogens don't have a defense against," Weber concluded.

 

Learn more about the process called conjugation, a kind of bacterial sex.

 

Sources: AAAS/Eurekalert! Via DTU Biosustain, Nature Communications

 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 04, 2018
Videos
AUG 04, 2018
A Radical New Approach to Treating Neurodegeneration
The pathways that neural impulses travel can't be retrieved once they're lost... or can they?...
AUG 13, 2018
Genetics & Genomics
AUG 13, 2018
Heritable and Environmental Factors Influence Gene Activity
Even if something gets described as epigenetic, it does not necessarily mean it's an environmental effect....
AUG 29, 2018
Neuroscience
AUG 29, 2018
Are Women's Brains Protected From Cosmic Rays?
Going to space is a dream for many. Astronauts are viewed almost as superheroes, but the dangers of space travel cannot be underestimated. On long trips, s...
SEP 01, 2018
Videos
SEP 01, 2018
Modeling the Blood Brain Barrier on a Chip
Organ chips are great for studying parts of the human body that are challenging to explore....
SEP 03, 2018
Cell & Molecular Biology
SEP 03, 2018
Predicting the Impact of Gene Splicing Errors
Researchers are beginning to learn more about how gene mutations that affect RNA splicing are connected to health problems....
SEP 04, 2018
Cell & Molecular Biology
SEP 04, 2018
Powerful Imaging Reveals Immune Cells on Patrol
With a tool called lattice light sheet microscopy, scientists can view biological processes as they happen in live cells....
Loading Comments...