JUN 23, 2017 4:36 PM PDT

Evolutionary Insight - From Parasitic Wasps

WRITTEN BY: Carmen Leitch

Organisms need to be able to adapt and evolve in order to survive, and that change can happen at the cellular level. A gene may be acquired, or existing genes may have to change their function, or acquire new ones. It has been suggested that genes might duplicate and then edit one version in such a way that it does something new, or gains a function in a new part of the organism. Researchers using Jewel Wasps as model organism have found an interesting genetic characteristic that could be happening in other species.

The Werren Lab at the University of Rochester performed the new work, published in Current Biology, that shows how Jewel Wasps can make genes ‘co-opt’ functions. These wasps have venom that can quickly change; there is a fast turnover of the venom genes, enabled by regulatory genetic features that sit next to the genes. Those regulatory regions can control whether the gene is expressed or not.

"It is almost as if they are now moonlighting," explained John (Jack) Werren, Professor of Biology. "They've got a day job, and then take on a night job as well. Over time, if the night job works out, they may give up the day job and evolve as a venom specialist. However, in other cases we have found that they stop moonlighting as venom genes but appear to retain their day job."

Thus there is no need for a second gene, there is simply a shift in the regulation of one gene so that it takes on another role. That shift is especially good for organisms that need to adapt, and fast.

"Co-option of single copy genes can be a more rapid mechanism for adapting to a new environment because it does not require the gene to be duplicated first," said co-lead author Ellen Martinson, a postdoctoral research associate with the Werren Lab.

"In essence, these wasps are recycling their genes for new functions," said co-lead Mrinalini, a former postdoc in the Werren Lab who has since joined the National University of Singapore, where she studies snake venoms.

Female parastic wasp injects venom in fly pupa host. / Credit: Michael E. Clark

By analyzing and sequencing the genes that are expressed in wasps and the proteins they generate - the transcriptome and proteome, respectively, the investigators determined that over half of the wasps’ venom components came from co-opted single copy genes. The venom is able to quickly adapt to a variety of hosts.

The scientists have suggested that this is not limited to these wasps, an that gene co-opting may be commonly found throughout nature.

When it comes to parasitoid venoms, there could be another benefit, said Werren. "The great diversity of parasitoid venoms and abundance of these species (estimates run as high as 600,000 parasitoid species on earth), combined with the fact that parasitoid venoms have evolved to manipulate metabolic processes, suggests that they are potentially an immense untapped cornucopia for drug discovery."

 

Sources: AAAS/Eurekalert! via University of Rochester, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 23, 2019
Cell & Molecular Biology
DEC 23, 2019
An Antioxidant Found in Green Tea Can Fight Tuberculosis
In 2018, around ten million people around the globe were sickened by tuberculosis (TB) and about 1.5 million people were killed by tuberculosis....
JAN 04, 2020
Immunology
JAN 04, 2020
Why Do Skincare Products Sometimes Cause Rashes?
Chemicals commonly found in skincare products are intended to avoid interactions with the part of the immune system responsible for triggering allergic inf...
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 19, 2020
Cell & Molecular Biology
JAN 19, 2020
Scientists Create Neuromuscular Organoids That Contract
This work is a breakthrough for the study of neuromuscular diseases including ALS, muscular dystrophy and multiple sclerosis....
JAN 26, 2020
Cell & Molecular Biology
JAN 26, 2020
Using Stem Cells to Treat Chronic Pain
Scientists have used a mouse model to show that human stem cells could be used to engineer neurons that stop pain....
FEB 06, 2020
Cell & Molecular Biology
FEB 06, 2020
Taking a Closer Look at a Disease-Linked Protein
Misfolded proteins are closely linked to many neurodegenerative disorders. Researchers have learned more about one of those pathogenic proteins....
Loading Comments...