JUN 23, 2017 04:36 PM PDT

Evolutionary Insight - From Parasitic Wasps

WRITTEN BY: Carmen Leitch

Organisms need to be able to adapt and evolve in order to survive, and that change can happen at the cellular level. A gene may be acquired, or existing genes may have to change their function, or acquire new ones. It has been suggested that genes might duplicate and then edit one version in such a way that it does something new, or gains a function in a new part of the organism. Researchers using Jewel Wasps as model organism have found an interesting genetic characteristic that could be happening in other species.

The Werren Lab at the University of Rochester performed the new work, published in Current Biology, that shows how Jewel Wasps can make genes ‘co-opt’ functions. These wasps have venom that can quickly change; there is a fast turnover of the venom genes, enabled by regulatory genetic features that sit next to the genes. Those regulatory regions can control whether the gene is expressed or not.

"It is almost as if they are now moonlighting," explained John (Jack) Werren, Professor of Biology. "They've got a day job, and then take on a night job as well. Over time, if the night job works out, they may give up the day job and evolve as a venom specialist. However, in other cases we have found that they stop moonlighting as venom genes but appear to retain their day job."

Thus there is no need for a second gene, there is simply a shift in the regulation of one gene so that it takes on another role. That shift is especially good for organisms that need to adapt, and fast.

"Co-option of single copy genes can be a more rapid mechanism for adapting to a new environment because it does not require the gene to be duplicated first," said co-lead author Ellen Martinson, a postdoctoral research associate with the Werren Lab.

"In essence, these wasps are recycling their genes for new functions," said co-lead Mrinalini, a former postdoc in the Werren Lab who has since joined the National University of Singapore, where she studies snake venoms.

Female parastic wasp injects venom in fly pupa host. / Credit: Michael E. Clark

By analyzing and sequencing the genes that are expressed in wasps and the proteins they generate - the transcriptome and proteome, respectively, the investigators determined that over half of the wasps’ venom components came from co-opted single copy genes. The venom is able to quickly adapt to a variety of hosts.

The scientists have suggested that this is not limited to these wasps, an that gene co-opting may be commonly found throughout nature.

When it comes to parasitoid venoms, there could be another benefit, said Werren. "The great diversity of parasitoid venoms and abundance of these species (estimates run as high as 600,000 parasitoid species on earth), combined with the fact that parasitoid venoms have evolved to manipulate metabolic processes, suggests that they are potentially an immense untapped cornucopia for drug discovery."


Sources: AAAS/Eurekalert! via University of Rochester, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 29, 2018
AUG 29, 2018
Are Women's Brains Protected From Cosmic Rays?
Going to space is a dream for many. Astronauts are viewed almost as superheroes, but the dangers of space travel cannot be underestimated. On long trips, s...
SEP 08, 2018
SEP 08, 2018
How Stem Cells can Help us Model, Treat and Repair Eye Disorders
Researchers now have straightforward ways to generate stem cells, which have tremendous therapeutic potential, from specialized adult cells....
SEP 13, 2018
Cannabis Sciences
SEP 13, 2018
The Physiology of the Munchies
It's known that marijuana makes people crave food in a phenomenon commonly called the munchies; until now, we didn't know much about why....
OCT 13, 2018
Genetics & Genomics
OCT 13, 2018
A Better Way to Analyze Epigenetic Tags
This improved technology does not harm the DNA under analysis....
OCT 15, 2018
Cell & Molecular Biology
OCT 15, 2018
Revealing Fat's Role in Diabetes Development
New research may change how we look at type 2 diabetes, an acquired disease....
OCT 17, 2018
Cell & Molecular Biology
OCT 17, 2018
Saving Patients From Unnecessary Chemotherapy with a Blood Test
Often, cancer patients get chemotherapy after surgery to ensure that their cancer will not come back; for many it's not needed....
Loading Comments...