JUN 26, 2017 04:26 PM PDT

A Cellular Guillotine for Studying Regeneration

WRITTEN BY: Carmen Leitch

Not many organisms can heal themselves; it’s an ability most would like to have and researchers have been trying to understand it. One such organism is Stentor coeruleus, which only consists of one cell that can grow two new healthy cells when cut in half. To take full advantage of the opportunities such an amazing animal presents, investigator Sindy Tang and her team came up with a new machine.

"It is one of the Holy Grails of engineering to make self-healing materials and machines," said Tang, an Assistant Professor of Mechanical Engineering at Stanford University. "A single cell is analogous to a spacecraft - both have to figure out how to repair damage without anyone's help from the outside."

It’s not so easy to just cut cells into two parts though. Typical techniques take around three minutes for one cell, and most experiments require not tens but hundreds of cells. Reporting in the Proceedings of the National Academy of Sciences, the scientists have engineered a guillotine to slice cells in half. A cell gets pushed into a tight channel, then directly into a blade, and the cell gets cur evenly in half (as seen in the above video). This new method has a similar survival rate as the old technique, but does it about 200 times faster.

Scientists were limited because of the tedious work, so the researchers hope this tool will spark development in the field of self-healing materials.

Researchers led by Sindy Tang, assistant professor of mechanical engineering at Stanford, have created a new tool for cutting cells, called a microfluidic guillotine. This eight-channel version of their tool can cut cells over 200 times faster than conventional methods. / Credit: L.A. Cicero/Stanford News Service

"Cutting a single cell by hand takes about 3 minutes if you're good at it, and even if you're good at it, you can't always cut the cell equally in half. This method has not changed for over 100 years," said lead author Lucas Blauch, a graduate candidate in the Tang lab. "We knew that our lab's expertise in microfluidics would allow us to create a device to do that much faster."

The old methodology took so long that by the time enough cut cells were generated to get on with an actual experiment, the cells that had been cut first were already starting to heal or change. Only 100 cells could be cut in around five hours. Now, by scaling up Tang’s guillotine and running eight channels of cells at once, the precise slicing of about 150 cells in a little over two minutes can be achieved. The more standardized cuts created a more synchronized population of cells to use for more reliable results.

Now, Tang and her group are prepared to dive into questions about how these cells are able to heal themselves. "From the engineering perspective, we hope to be able to extract basic principles from our studies, and apply them to engineering design to make self-healing materials and machines," she concluded.

 

Sources: AAAS/Eurekalert! via Stanford University, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 15, 2018
Genetics & Genomics
JUN 15, 2018
Why Blood Cells Originate in Bone
Adults typically produce billions of new blood cells every day....
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that...
JUL 01, 2018
Genetics & Genomics
JUL 01, 2018
Endocrine Disruptors Have an Epigenetic Effect
EDCs act similarly to hormones that we naturally produce, and are found in many household products....
JUL 01, 2018
Videos
JUL 01, 2018
Growing Patient Cells on a Chip for Personalized Drug Screens
This work could help eliminate animal models, and tailor medicine to the patient....
JUL 04, 2018
Cell & Molecular Biology
JUL 04, 2018
How Factors Combine to Amplify the Risk of MS
Smoking and exposure to paints had a massive impact when combined with genetic risk factors....
AUG 14, 2018
Cell & Molecular Biology
AUG 14, 2018
A Totally New Look at the Cell's Powerhouse
Mitochondria don't only have their own DNA. They also have their own ribosomes....
Loading Comments...