AUG 13, 2017 12:52 PM PDT

Experimental Drug Slows Progression of Rare Genetic Disease

WRITTEN BY: Carmen Leitch

Researchers have identified a drug that has slowed the progression of a rare genetic disease in clinical trials. A fatal neurological disorder primarily affecting young people, Niemann-Pick disease type C1 (NPC1) is a degenerative disease in which cognitive and neurological functions progressively decline. The new work has been reported in the Lancet and is described in the following video.

The National Institutes of Health (NIH) is working with Sucampo Pharmaceuticals to cooperate on the development of the new drug, 2-hydroxypropyl-beta-cyclodextrin (VTS-270). A clinical trial compared two groups: one with 14 participants from four to 23 years old who received the drug once a month for 12 to 18 months, and another group of three who got the drug every two weeks for 18 months. Once it was seen that the more frequent doses were well tolerated, doses were increased for the other participants. The results were compared to the progress of patients in a previous study.

“The results are very encouraging and support continued development of VTS-270 for treating NPC1,” said Forbes D. Porter, M.D., Ph.D., clinical director at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the study’s senior author. “Compared to untreated patients we followed in an earlier study, participants who received VTS-270 scored better on a scale used to evaluate disease severity and progression, including elements such as speech, cognition, and mobility.”

The drug did not increase adverse outcomes for participants, although some patients with hearing loss did experience more hearing loss after treatment. Hearing aids were used to help these patients, and they could go on with a normal life.

Niemann-Pick disease type C1, a lipid storage disorder, as seen in a mouse cerebellum / Credit: NICHD

NPC1 causes a buildup of cholesterol in brain cells, resulting in the disease symptoms. The investigators thus assessed cholesterol metabolism in the study participants’ central nervous system and found a cholesterol metabolite. That suggested that the drug is improving the cholesterol metabolism dysfunction carried by the patients. The levels of two other molecules indicated that there was likely less damage occurring in the brain as well.

Patient neurological assessments demonstrated that the drug was slowing disease progression. Because of these encouraging results, the scientists are seeking to move on to another clinical trial, already approved by the FDA, to find the symptoms that the drug is targeting, and to refine the dosage. The ultimate goal, of course, is to bring this drug to all NPC1 patients who could benefit from it.

 

Sources: NIH, The Lancet

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 07, 2020
Cell & Molecular Biology
With Nanopores, Small Samples Detect Diseases
SEP 07, 2020
With Nanopores, Small Samples Detect Diseases
If you've ever been through a battery of tests while doctors try to find a diagnosis for an ailment, you know that many ...
SEP 14, 2020
Cell & Molecular Biology
Learning More About How Cells Use Phase Separation
SEP 14, 2020
Learning More About How Cells Use Phase Separation
It was once thought that cellular machines called organelles, which are structures bound by membranes, directed most of ...
OCT 03, 2020
Cell & Molecular Biology
Growing an Organism From One Cell
OCT 03, 2020
Growing an Organism From One Cell
Scientists have used model organisms to view the first few hours of development in various organisms. A single cell is f ...
NOV 01, 2020
Cell & Molecular Biology
There's More to Neutrophil Function Than We Knew
NOV 01, 2020
There's More to Neutrophil Function Than We Knew
Neutrophils are an abundant type of white blood cell that circulate in the blood that can provide a general defense aga ...
NOV 11, 2020
Cell & Molecular Biology
Visualizing a Tumor Suppressor in Action
NOV 11, 2020
Visualizing a Tumor Suppressor in Action
Many types of cells in our bodies are short-lived and need to be replenished. Cell division has to be carefully controll ...
NOV 17, 2020
Genetics & Genomics
Why Mutations in RRP7 Cause a Congenital Brain Disorder
NOV 17, 2020
Why Mutations in RRP7 Cause a Congenital Brain Disorder
A large family with some members that have a rare brain disorder has helped scientists learn more about both brain devel ...
Loading Comments...