SEP 25, 2017 5:37 PM PDT

NASA Wants to Know how Space Radiation Impacts the Body

WRITTEN BY: Carmen Leitch

Through the Human Research Program (HRP), NASA wants to find the safest ways to move humans through space. Charged particles are particularly interesting to scientists working in this area. Astronauts are exposed to a tremendous amount of those tiny particles as radiation when they’re in space, and it’s important to know the effect it has on the human body. The video below features NASA Space Radiation Element Scientist Lisa Simonsen, Ph.D. discussing what space radiation is.

"One of our biggest challenges on a mission to Mars is protecting astronauts from radiation," explained Simonsen. "You can't see it; you can't feel it. You don't know you're getting bombarded by radiation."

We think of radiation as being harmful, and might assume that the radiation in space is similar to what’s on Earth, but that’s incorrect. Our atmosphere and magnetic field have a major blunting effect on the radiation that actually gets through to us. We might also get exposed to X-rays at the doctor’s office, and can be protected from harmful effects caused by the rays simply by wearing a heavy lead shield.

Space radiation is not the same though. It contains enough energy to violently collide with nuclei that are the basis of matter, the stuff human cells and metal shields are made of. These nuclear collisions result in the breakup of both incoming space radiation and the nuclei it hits. New particles are thus created, called secondary radiation.

"In space, there is particle radiation, which is basically everything on the periodic table, hydrogen all the way up through nickel and uranium, moving near the speed of light," said NASA Research Physicist Tony Slaba, Ph.D. "NASA doesn't want to use heavy materials like lead for shielding spacecraft because the incoming space radiation will suffer many nuclear collisions with the shielding, leading to the production of additional secondary radiation. The combination of the incoming space radiation and secondary radiation can make the exposure worse for astronauts."

Galactic cosmic rays (GCRs) are of most concern to NASA. It is challenging to shield against GCRs. They come from exploding stars called supernovae. / Credit: NASA

The focus of the HRP is to determine how space radiation impacts the human body, particularly what effects galactic cosmic rays (GCRs) have. "There are three main sources of space radiation, but GCRs are of most concern to researchers for a mission to Mars," explained NASA Research Physicist John Norbury, Ph.D. "GCRs that come from exploding stars known as supernovae outside the solar system are the most harmful to the human body."

Other sources of space radiation exist, like the Van Allen Belts, or during solar particle events that are associated with times of intense solar activity, coronal mass ejections and solar flares. GCRs are the primary problem, however, for HRP researchers who are tasked with protecting astronauts from space radiation. 

Accurate data collection remains a challenge for the HRP scientists. While NASA has a Space Radiation Laboratory (NSRL) to simulate conditions, it’s difficult to accurately reproduce the experience of an astronaut who may be in space for an entire year.

NASA continues to prepare for a mission to Mars and will utilize every technology at its disposal to protect astronauts. There are a variety of critical instruments, like Orion's Hybrid Electronic Radiation Assessor, to monitor some very tiny particles with a big impact.

Sources: AAAS/Eurekalert! Via NASA

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 21, 2021
Cancer
Exercise: A Secret Weapon to Combat Prostate Cancer?
OCT 21, 2021
Exercise: A Secret Weapon to Combat Prostate Cancer?
Exercise oncology is an evolving science that considers the addition of physical activity regimens to the treatment ...
OCT 19, 2021
Health & Medicine
Can a Blood Test Guide Prognosis for Traumatic Brain Injury?
OCT 19, 2021
Can a Blood Test Guide Prognosis for Traumatic Brain Injury?
Jim had been skateboarding since he was seven years old and spent hours a day practicing. He had been in local competiti ...
OCT 28, 2021
Clinical & Molecular DX
Asthma Diagnostic Detects Leaky Airways
OCT 28, 2021
Asthma Diagnostic Detects Leaky Airways
Both asthma and chronic obstructive pulmonary disease (COPD) are airway disorders associated with elevated, uncontrolled ...
OCT 28, 2021
Cell & Molecular Biology
The Production & Export of Ribosomal Subunits is Caught on Video
OCT 28, 2021
The Production & Export of Ribosomal Subunits is Caught on Video
Protein production is essential for life; cells use DNA to transcribe active genes into RNA sequences, and ribosomes tra ...
NOV 30, 2021
Drug Discovery & Development
Enabling new levels of quantification with the SCIEX 7500 system - powered by SCIEX OS Software
NOV 30, 2021
Enabling new levels of quantification with the SCIEX 7500 system - powered by SCIEX OS Software
Sensitivity is a fundamental performance characteristic of a mass spectrometer The SCIEX 7500 system is enabling new lev ...
DEC 08, 2021
Clinical & Molecular DX
Scaling Down to Go Big: An Overview of the Lab-on-a-Chip
DEC 08, 2021
Scaling Down to Go Big: An Overview of the Lab-on-a-Chip
By Julianne Davis - Technical Writer and Support Scientist at Biotium The Rise of the Lab-on-a-Chip With the advent of m ...
Loading Comments...