JAN 07, 2018 11:01 AM PST

Barcoding Reveals Details of Blood Formation

WRITTEN BY: Carmen Leitch

Following one cell through development can pose many challenges. Researchers overcame them by inserting tags into cells as a kind of barcode so they can be tracked individually in their natural state. In doing so, they observed that blood cells regenerate in a different way than how such cells behave following a transplant, calling into question some previous work. The data has been reported in Nature.

Landscape of the lineage fate (natural environment) of unperturbed haematopoiesis (the process of mature blood and immune cell production). / Credit: Courtesy of the Stem Cell Program, Boston Children's Hospital.

"The findings of this research, if applicable to humans, will have implications for blood cell transplantation, and for clinical and research methods using blood cells, such as gene therapy or gene editing," said John W. Thomas, Ph.D., Stem Cell and Cell-based Therapy Coordinator at NHLBI.

While this work is focused on the improvement of blood regeneration therapeutics, the researchers think it will apply to other cell types. It may yield insight about regenerative therapies that repair damaged or diseased tissues.

"Our results show that stem cells and their less pluripotent descendants, blood progenitors, behave somewhat differently when studied without removing them from their native environment versus when studied in a laboratory or in transplantation; leading to differences in the type of blood lineages they make," noted the first author of the work, Alejo Rodriguez Fraticelli, Ph.D., from Harvard Stem Cell Institute, at the Boston Children's Hospital.

Because there aren’t many useful techniques for the study of blood formation in the body’s natural state, most studies that have researched the lineage of individual blood cells have done so after a transplant. As such, the cells under investigation have been perturbed because they were excised from their normal environment. The scientists have suggested that their current models are a better representation of the directions that blood cells follow as they develop.

For investigator Rodriguez Fraticelli, blood regeneration is critical to study in its normal context. "Moving forward, we need to come up with methods to better predict what types of cells will be the most optimal for therapy, for instance in reprogramming cells, and editing," he said.

For this work, a transposon, which can insert in a random spot in the genome when an enzyme called transposase is present, was used to track the progenitors of blood cells as they move through the natural and unperturbed blood regeneration process. It has resulted in a revised roadmap that indicates how blood production and regeneration occurs in the natural state. The researchers also used single-cell RNA sequencing for their work.


An introduction to sequencing individual cells is presented in the video above from Illumina.

Sources: AAAS/Eurekalert! Via NIH/National Heart, Lung and Blood Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of criti ...
MAR 23, 2020
Cell & Molecular Biology
MAR 23, 2020
How a Father's Diet Can Impact the Health of His Offspring
When fathers consume a diet high in fat or low in protein it can increase the risk of metabolic disorders like diabetes ...
MAR 29, 2020
Cell & Molecular Biology
MAR 29, 2020
Investigating How Genetic Variants Impact the Cerebral Cortex
The outermost layer of the brain is called the cerebral cortex, a relatively thin sheet of gray matter that performs a v ...
APR 14, 2020
Cell & Molecular Biology
APR 14, 2020
Combining Methods to Learn More About Protein Interactions
Proteins usually work together, whether as part of a pathway or a complex, and there are several ways to investigate pro ...
APR 23, 2020
Cardiology
APR 23, 2020
Arteries Respond in Different Ways in Females and Males
Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myograp ...
MAY 26, 2020
Cell & Molecular Biology
MAY 26, 2020
The Lasting Glow of Tube Worm Slime
Tube worms are ancient creatures that can be found near hydrothermal vents on the seafloor. Their bioluminescence apears ...
Loading Comments...