JAN 07, 2018 11:01 AM PST

Barcoding Reveals Details of Blood Formation

WRITTEN BY: Carmen Leitch

Following one cell through development can pose many challenges. Researchers overcame them by inserting tags into cells as a kind of barcode so they can be tracked individually in their natural state. In doing so, they observed that blood cells regenerate in a different way than how such cells behave following a transplant, calling into question some previous work. The data has been reported in Nature.

Landscape of the lineage fate (natural environment) of unperturbed haematopoiesis (the process of mature blood and immune cell production). / Credit: Courtesy of the Stem Cell Program, Boston Children's Hospital.

"The findings of this research, if applicable to humans, will have implications for blood cell transplantation, and for clinical and research methods using blood cells, such as gene therapy or gene editing," said John W. Thomas, Ph.D., Stem Cell and Cell-based Therapy Coordinator at NHLBI.

While this work is focused on the improvement of blood regeneration therapeutics, the researchers think it will apply to other cell types. It may yield insight about regenerative therapies that repair damaged or diseased tissues.

"Our results show that stem cells and their less pluripotent descendants, blood progenitors, behave somewhat differently when studied without removing them from their native environment versus when studied in a laboratory or in transplantation; leading to differences in the type of blood lineages they make," noted the first author of the work, Alejo Rodriguez Fraticelli, Ph.D., from Harvard Stem Cell Institute, at the Boston Children's Hospital.

Because there aren’t many useful techniques for the study of blood formation in the body’s natural state, most studies that have researched the lineage of individual blood cells have done so after a transplant. As such, the cells under investigation have been perturbed because they were excised from their normal environment. The scientists have suggested that their current models are a better representation of the directions that blood cells follow as they develop.

For investigator Rodriguez Fraticelli, blood regeneration is critical to study in its normal context. "Moving forward, we need to come up with methods to better predict what types of cells will be the most optimal for therapy, for instance in reprogramming cells, and editing," he said.

For this work, a transposon, which can insert in a random spot in the genome when an enzyme called transposase is present, was used to track the progenitors of blood cells as they move through the natural and unperturbed blood regeneration process. It has resulted in a revised roadmap that indicates how blood production and regeneration occurs in the natural state. The researchers also used single-cell RNA sequencing for their work.


An introduction to sequencing individual cells is presented in the video above from Illumina.

Sources: AAAS/Eurekalert! Via NIH/National Heart, Lung and Blood Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
How the Kava Plant Creates Medicinal Compounds
Nature has given us some of our best medicines; it's thought that as many as half the drugs we used are derived from natural products....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
Why We Gain Weight as We Get Older
As people get older, they tend to start putting on weight. New work from an international team of researchers explains why....
NOV 11, 2019
Cell & Molecular Biology
NOV 11, 2019
How Bones, not Adrenaline, Drive the Fight-or-Flight Response
Do we feel the fight-or-flight instinct in our bones?...
NOV 11, 2019
Genetics & Genomics
NOV 11, 2019
Membrane-less Organelle Found to Play a Role in Preventing Cancer
In recent years, scientists have found that a phenomenon called phase separation plays a critical role in the functions of cells....
NOV 11, 2019
Neuroscience
NOV 11, 2019
The Brain Waves That Decide Whether to Keep or Discard a Memory
  It is during sleep when the brain reviews all of the information it received during the day, and either cements it into long term memory or discards...
NOV 11, 2019
Microbiology
NOV 11, 2019
Antibody Discovered That May be the Key to a Universal Flu Vaccine
Instead of designing a new flu vaccine every year, researchers have made a breakthrough that may lead to a single vaccine that protects against all strains....
Loading Comments...