APR 06, 2015 08:27 AM PDT

Stem Cells Age-Discriminate Organelles to Maintain Stemness

WRITTEN BY: Judy O'Rourke
Tissue stem cells, which continuously renew our tissues, can divide asymmetrically to produce two types of daughter cells. One will be the new stem cell, where as the other will give rise to the differentiating cells of the tissue.

A study jointly lead by laboratories in the Institute of Biotechnology and Massachusetts Institute of Technology (MIT) have investigated whether stem cells may also use asymmetric cell division to reduce accumulation of cellular damage. Damage buildup can cause stem cell exhaustion that results in reduced tissue renewal and aging.
Human mammary stem-like cell apportions aged mitochondria asymmetrically between daughter cells. Mitochondria were labeled age-selectively red 51 hours prior to imaging, leaving mitochondria that are younger unlabelled. The daughter cell that will become the new stem cell (bottom left) receives only few old mitochondria.
Researchers have developed a novel approach to follow cellular components, such as organelles, age-selectively during cell division.

"We found that stem cells segregate their old mitochondria to the daughter cell that will differentiate, whereas the new stem cell will receive only young mitochondria" says Pekka Katajisto, PhD, a group leader and academy research fellow at BI.

Mitochondria appear to be particularly important for stem cells, as other analyzed organelles were not similarly age-discriminated, and since inhibition of normal mitochondrial quality control pathways stopped their age-selective segregation.

"There is a fitness advantage to renewing your mitochondria," says David Sabatini, MD, PhD, professor at MIT and Whitehead Institute. "Stem cells know this and have figured out a way to discard their older components."

While the mechanism used by stem cells to recognize the age of their mitochondria remains unknown, forced symmetric apportioning of aged mitochondria resulted in loss of stemness in all of the daughter cells. "This suggests that the age-selective apportioning of old and potentially damaged organelles may be a way to fight stem cell exhaustion and aging," Katajisto says.

Katajisto laboratory is now exploring how old mitochondria differ from old, and whether this phenomenon occurs in other cell types beyond the human mammary stem-like cells examined here as well as in in vivo.

[Source: University of Helsinki]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
New study finds that the structure of chromosomes may not be as important to transcriptional activity as we once thought
New study finds the chromatin structures (heterochromatin and euchromatin) may not be determinate of whether genes in a particular region of a chromosome get expressed....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Redundancies in a Protein Network Keep Development on Track
As tissues grow in a developing embryo, they have to fold in the right way to create the proper structures....
SEP 21, 2019
Cell & Molecular Biology
SEP 21, 2019
Discovery of Bone Bits in Blood may Help Explain Vascular Calcification
As we age, calcium can build up in various tissues in the body, and cause them to harden in a process called calcification....
SEP 21, 2019
Genetics & Genomics
SEP 21, 2019
Using CRISPR to Edit the DNA Carried by Human Sperm
Efforts to edit the human genome are rolling forward, despite a call for a moratorium on heritable edits....
SEP 21, 2019
Microbiology
SEP 21, 2019
Researchers Reconstruct the HIV Genome From a Sample Taken in 1966
Now there is biological evidence that the virus infected people in Africa before it was identified in the US....
SEP 21, 2019
Neuroscience
SEP 21, 2019
New MRI scan can reveal molecular changes in the brain
MRI scans give us pictures of the brain that depict the physical structure of brain tissue. Now, researchers discovered a way to determine the biological m...
Loading Comments...