APR 06, 2015 08:27 AM PDT

Stem Cells Age-Discriminate Organelles to Maintain Stemness

WRITTEN BY: Judy O'Rourke
Tissue stem cells, which continuously renew our tissues, can divide asymmetrically to produce two types of daughter cells. One will be the new stem cell, where as the other will give rise to the differentiating cells of the tissue.

A study jointly lead by laboratories in the Institute of Biotechnology and Massachusetts Institute of Technology (MIT) have investigated whether stem cells may also use asymmetric cell division to reduce accumulation of cellular damage. Damage buildup can cause stem cell exhaustion that results in reduced tissue renewal and aging.
Human mammary stem-like cell apportions aged mitochondria asymmetrically between daughter cells. Mitochondria were labeled age-selectively red 51 hours prior to imaging, leaving mitochondria that are younger unlabelled. The daughter cell that will become the new stem cell (bottom left) receives only few old mitochondria.
Researchers have developed a novel approach to follow cellular components, such as organelles, age-selectively during cell division.

"We found that stem cells segregate their old mitochondria to the daughter cell that will differentiate, whereas the new stem cell will receive only young mitochondria" says Pekka Katajisto, PhD, a group leader and academy research fellow at BI.

Mitochondria appear to be particularly important for stem cells, as other analyzed organelles were not similarly age-discriminated, and since inhibition of normal mitochondrial quality control pathways stopped their age-selective segregation.

"There is a fitness advantage to renewing your mitochondria," says David Sabatini, MD, PhD, professor at MIT and Whitehead Institute. "Stem cells know this and have figured out a way to discard their older components."

While the mechanism used by stem cells to recognize the age of their mitochondria remains unknown, forced symmetric apportioning of aged mitochondria resulted in loss of stemness in all of the daughter cells. "This suggests that the age-selective apportioning of old and potentially damaged organelles may be a way to fight stem cell exhaustion and aging," Katajisto says.

Katajisto laboratory is now exploring how old mitochondria differ from old, and whether this phenomenon occurs in other cell types beyond the human mammary stem-like cells examined here as well as in in vivo.

[Source: University of Helsinki]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
AUG 19, 2018
Technology
AUG 19, 2018
CRISPR Technology Seeks To Eliminate Genetic Diseases
Researchers at the University of Illinois have adapted to new CRISPR gene-editing technology that causes the cell's internal machinery to skip over a s...
SEP 15, 2018
Microbiology
SEP 15, 2018
Researchers Surprised to Find Bacteria That Make Electricity in the Human Gut
It seems that many microbes, including strains in the human gut that are potentially pathogenic, can generate electricity....
SEP 22, 2018
Videos
SEP 22, 2018
How Much of the Human Genome is Just Junk DNA?
Once written off as junk, it was suggested that some regions of the genome that don't code for protein act as regulators. But how much?...
OCT 01, 2018
Cell & Molecular Biology
OCT 01, 2018
Revealing How Antibiotics Work Against Bacteria
In a first, researchers have directly observed an antibiotic in action as it disrupted the membrane of a bacterial cell....
OCT 10, 2018
Genetics & Genomics
OCT 10, 2018
Using CRISPR in Utero to Treat Disease
Researchers have used a mouse model to show that it's possible to treat an illness before sickness occurs....
OCT 13, 2018
Genetics & Genomics
OCT 13, 2018
A Better Way to Analyze Epigenetic Tags
This improved technology does not harm the DNA under analysis....
Loading Comments...