APR 06, 2015 8:27 AM PDT

Stem Cells Age-Discriminate Organelles to Maintain Stemness

WRITTEN BY: Judy O'Rourke
Tissue stem cells, which continuously renew our tissues, can divide asymmetrically to produce two types of daughter cells. One will be the new stem cell, where as the other will give rise to the differentiating cells of the tissue.

A study jointly lead by laboratories in the Institute of Biotechnology and Massachusetts Institute of Technology (MIT) have investigated whether stem cells may also use asymmetric cell division to reduce accumulation of cellular damage. Damage buildup can cause stem cell exhaustion that results in reduced tissue renewal and aging.
Human mammary stem-like cell apportions aged mitochondria asymmetrically between daughter cells. Mitochondria were labeled age-selectively red 51 hours prior to imaging, leaving mitochondria that are younger unlabelled. The daughter cell that will become the new stem cell (bottom left) receives only few old mitochondria.
Researchers have developed a novel approach to follow cellular components, such as organelles, age-selectively during cell division.

"We found that stem cells segregate their old mitochondria to the daughter cell that will differentiate, whereas the new stem cell will receive only young mitochondria" says Pekka Katajisto, PhD, a group leader and academy research fellow at BI.

Mitochondria appear to be particularly important for stem cells, as other analyzed organelles were not similarly age-discriminated, and since inhibition of normal mitochondrial quality control pathways stopped their age-selective segregation.

"There is a fitness advantage to renewing your mitochondria," says David Sabatini, MD, PhD, professor at MIT and Whitehead Institute. "Stem cells know this and have figured out a way to discard their older components."

While the mechanism used by stem cells to recognize the age of their mitochondria remains unknown, forced symmetric apportioning of aged mitochondria resulted in loss of stemness in all of the daughter cells. "This suggests that the age-selective apportioning of old and potentially damaged organelles may be a way to fight stem cell exhaustion and aging," Katajisto says.

Katajisto laboratory is now exploring how old mitochondria differ from old, and whether this phenomenon occurs in other cell types beyond the human mammary stem-like cells examined here as well as in in vivo.

[Source: University of Helsinki]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 29, 2019
Genetics & Genomics
DEC 29, 2019
Diet Rapidly Influences Sperm Quality
While it's known that environmental factors influence the quality of sperm, researchers have found that diet can have a rapid impact on sperm....
DEC 31, 2019
Cell & Molecular Biology
DEC 31, 2019
Growing a Better Lab-Based Meat
Meat consumption has risen around the world in the past few decades, and demand is still increasing....
JAN 04, 2020
Cell & Molecular Biology
JAN 04, 2020
Shared Mechanisms of Mitochondrial Division Highlight Evolutionary Links
Organisms as different as humans and algae have some biological mechanisms in common....
JAN 11, 2020
Neuroscience
JAN 11, 2020
Molecular Therapy to Self-Repair Nerve Cells
Neurodegenerative diseases such as Multiple Sclerosis (MS), Alzheimer's, and Huntington's Disease are predicated on damage to myelin on nerve cells...
FEB 07, 2020
Genetics & Genomics
FEB 07, 2020
Mutations That Lead to Cancer May Occur Decades Before Diagnosis
As our cells age or divide, errors can accumulate in the genome they carry, which can lead to cancer, and a variety of environmental and genetic factors ca...
Loading Comments...