FEB 05, 2018 3:36 PM PST

New Peptide can Bust Biofilms

WRITTEN BY: Carmen Leitch

Because antibiotic resistance is a growing health problem that will eventually threaten all of us, there has been considerable focus on finding new drugs to combat bacteria that can get around our current therapeutics. No stone is going unturned, and now scientists have made alterations to a compound found in the human body so that it will destroy tough microbes. The new drug is now going to clinical trials for human skin infections. 

 This is a colorized scanning electron micrograph of a white blood cell eating an antibiotic resistant strain of Staphylococcus aureus bacteria, MRSA. / Credit:NIH

The drug is modeled after a human peptide, LL-37, a chemical just a few amino acids long. Typically, the peptide aids in the regulation of the immune response and has some natural ability to eliminate bacteria. The chemical had previously been shortened to make it stronger, and now it has been optimized further. It could be used for the destruction of dangerous bacterial infections.

Some of those infections are chronic. If a bacterium survives antibiotic treatment, it can group with other resilient microbes. Together they can form uncontrollable infections, such as on a medical device or in a wound. If they build a biofilm, as described in the following video, it can be impossible for drugs to penetrate into them. Sometimes infections will form persisters; they lie dormant until the antibiotic exposure is over, and then they come alive again to cause disease.

 A variation of  LL-37, SAAP-148, was able to destroy these persistent and dangerous bacterial colonies in a dish, and in an animal model of a wound. It even killed bacteria that had been treated, unsuccessfully, with another antibiotic. 

The drug has another important feature. Many times, molecules will get stuck to lipids and proteins in the blood, and are then unable to exert an effect. SAAP-148 does not suffer that problem and can circulate in the blood without binding to stuff.

This work contributes “an important piece … to the puzzle of creating a perfect antibiotic,” Kim Lewis, a microbiologist at Northeastern University in Boston who was not involved in the work, told Science.


Sources: Science News, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 04, 2021
Drug Discovery & Development
Stem Cell Transplants May Treat Patients with Type 2 Diabetes
JUN 04, 2021
Stem Cell Transplants May Treat Patients with Type 2 Diabetes
Researchers at the Vinmec Research Institute of Stem Cell and Gene Technology in Hanoi, Vietnam have found that stem cel ...
JUN 08, 2021
Immunology
Fueling the Immune System's Killers
JUN 08, 2021
Fueling the Immune System's Killers
There’s a group of “killers” protecting your body against infections and eliminating potentially cance ...
JUN 14, 2021
Coronavirus
COVID-19 May Cause Diabetes
JUN 14, 2021
COVID-19 May Cause Diabetes
Reporting in Cell Metabolism, an international team of researchers has suggested that COVID-19 has caused diabetes in so ...
JUL 01, 2021
Microbiology
Plague Bacteria Found In the Remains of a 5,000 Year Old Man
JUL 01, 2021
Plague Bacteria Found In the Remains of a 5,000 Year Old Man
This image by Dominik Göldner, BGAEU, shows the skull of a hunter gatherer that was recovered from a site in present-day ...
JUL 06, 2021
Cell & Molecular Biology
Can Some Brain Plasticity Be Restored with Ketamine or Light?
JUL 06, 2021
Can Some Brain Plasticity Be Restored with Ketamine or Light?
The perineuronal net is known to play a crucial role in memory. This structure surrounds certain neurons, encasing their ...
JUL 22, 2021
Cell & Molecular Biology
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
JUL 22, 2021
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
To study biology, researchers need models. Once those models might have been a bit limited to organisms like rats or mic ...
Loading Comments...