MAR 12, 2018 4:44 PM PDT

A Totally New Way to Image Live Cells in the Brain

WRITTEN BY: Carmen Leitch

To investigate the intricate processes underlying biology, scientists often have to take a close look at incredibly tiny structures, something that isn’t always very easy. There have been incredible advancements in microscopy since it was first developed several hundred years ago, and the technology continues to improve all the time. Researchers can now get an accurate look at stuff that exists on the nanoscale, at only a few billionths of a meter wide.  When such small objects in biological tissue are under study, structures and proteins in the cell usually have to be labeled. That is often done with fluorescent tags or antibodies, that can be seen under specialized lighting in a microscope. There are many technical limitations to such work, however. 

Image of the neuron labelled in yellow surrounded by unlabelled neurons (appearing in white) using the SUSHI technique. Without this technique, the neurons appearing in white would not be visible. / Credit: © Jan Tønnesen & Valentin Nägerl.

A new technique aims to address some of those hurdles. Cells in the brain are densely interconnected and closely related; to get a better look at those relationships, scientists have created SUSHI, or Super-resolution Shadow Imaging. It was developed by the team of Dr. Jan Tønnesen, a researcher in the Ramón y Cajal Programme at the UPV/EHU's Department of Neurosciences. 

Reporting in Cell, the tool is specifically for imaging live brain tissue. Now a researcher does not have to label each cell of interest, but instead, fills the empty spaces in between in one fell swoop. The label also stays outside of the cells, acting as a negative contrast to the brain cells it surrounds. This process makes for a much easier and more straightforward way to see cells in living tissue.

"The SUSHI technique is revolutionary because it allows us to simultaneously image all the brain cells in a specific region of living brain tissue,” noted Dr. Tønnesen. “In the past we used to come across blank spaces in the microscopy images, because we were unable to label all the cells at the same time. This fact was a big constraint for us. From now on, this technique will enable us to see all the cells in the area of study that we put under the microscope lens as well as all their interactions, and that will allow us to advance our knowledge of brain functions in a healthy organ and in a diseased one".

You can check out a video above of images of brain cells produced by the scientists. In the video below, you can hear more about super-resolution microscopy. 

Sources: AAAS/Eurekalert! via University of the Basque Country, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 06, 2021
Genetics & Genomics
How Autism-Associated Mutations in One Gene Impact the Brain
JUN 06, 2021
How Autism-Associated Mutations in One Gene Impact the Brain
Autism spectrum disorder is complex; it presents differently in different patients and may be influenced by many factors ...
JUN 16, 2021
Cell & Molecular Biology
A Potential Way to Prevent Metastatic Cancer
JUN 16, 2021
A Potential Way to Prevent Metastatic Cancer
Metastatic cancer is the deadliest, and it can happen years after cancer has been treated to the point of remission. Met ...
JUN 17, 2021
Microbiology
Malaria Pathogen Caught Invading Red Blood Cells
JUN 17, 2021
Malaria Pathogen Caught Invading Red Blood Cells
Mosquitoes are the world's deadliest animals (after humans) and they transmit malaria, which kills about 400,000 people ...
JUL 05, 2021
Neuroscience
Immature Astrocytes Promote High Levels of Neuroplasticity
JUL 05, 2021
Immature Astrocytes Promote High Levels of Neuroplasticity
Researchers from France have found that astrocytes do more than support neurons in the central nervous system. They foun ...
JUL 16, 2021
Drug Discovery & Development
Machine Learning Ranks Cancer Drugs by Efficacy
JUL 16, 2021
Machine Learning Ranks Cancer Drugs by Efficacy
A machine learning algorithm developed by researchers at the Queen Mary University of London in the UK can rank cancer d ...
JUL 23, 2021
Cancer
Repurposed Antibiotics Show Promise Against Skin Cancer
JUL 23, 2021
Repurposed Antibiotics Show Promise Against Skin Cancer
In experiments with mice, researchers from the Netherlands have found that some antibiotics may be effective in tre ...
Loading Comments...