APR 05, 2018 07:35 PM PDT

New Tool Shows Brain Cells in Action

WRITTEN BY: Carmen Leitch


It's not your fault! Something went wrong with our formula.
Please begin your experiment again by clicking here.

If this error continues to occur please contact us at support@labroots.com.

Astrocytes are a special type of brain cell; shaped like stars, they are thought to have a critical role in the development of several neurological diseases including Alzheimer’s, Huntington ’s and Lou Gehrig’s diseases. Now researchers at UCLA have created a new technique for observing these cells in real time, while they remain deep within the brain of a living mouse. The work, reported in Neuron, will help investigators see how astrocytes impact communication between nerve cells. 

An astrocyte (green) interacts with a synapse (red), producing an optical signal (yellow). / Credit:UCLA/Khakh lab

"We're now able to see how astrocytes and synapses make physical contact and determine how these connections change in disorders like Alzheimer's and Huntington's disease," explained the lead author of the work, Baljit Khakh, a professor of physiology and neurobiology at the David Geffen School of Medicine at UCLA. "What we learn could open up new strategies for treating those diseases, for example, by identifying cellular interactions that support normal brain function."

Brain tissue is made up of several kinds of cells, and it can be challenging to model that system. For many years, researchers have been trying to understand how the tendrils that grow off of astrocytes impact synapses, where neurons meet and communicate with one another. The UCLA investigators have addressed this issue.

With their new method, various colors of light go through a lens and magnify tiny objects the can’t be seen with the naked eye, and are much smaller than what scientists could see with previous techniques. Now, astrocytes and how they interact with synapses is observable in mouse models of health and disease.

"We know that astrocytes play a major role in how the brain works and also influence disease," noted first author Chris Octeau, a postdoctoral fellow the Khakh lab. "But exactly how the cells accomplish these tasks has remained murky."

Scientists will now be able to work towards answering important questions in brain disease about cellular behavior. 

"This new tool makes possible experiments that we have been wanting to perform for many years," added Khakh, a member of the UCLA Brain Research Institute. "For example, we can now observe how brain damage alters the way that astrocytes interact with neurons and develop strategies to address these changes."

Sources: AAAS/Eurekalert! Via UCLA, Neuron

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 16, 2018
Clinical & Molecular DX
JUN 16, 2018
Nanoparticles Deliver "Theranostics" for Cancer Patients
New technology combing therapeutic agents and diagnostics (theranostics) can be used to deliver drugs to cancer cells. From the Moscow Institute of Physics...
JUN 19, 2018
Genetics & Genomics
JUN 19, 2018
New, Non-toxic Technique to Synthesize DNA
Researchers have figured out a way to synthesize DNA with a natural enzyme, and their approach is easy, fast and accurate....
JUN 22, 2018
JUN 22, 2018
Antiviral Compound Found in the Human Body
The human body can make a compound with a special power to fight viruses - an enzyme called viperin....
JUL 12, 2018
Cell & Molecular Biology
JUL 12, 2018
New and Improved Ways to Create Stem Cells
New techniques that can make stem cells could have a big impact on therapeutics....
JUL 21, 2018
JUL 21, 2018
Artificial Nerves May Transform Prosthetics
Researchers at Stanford made an artificial nerve that could move a cockroach leg....
AUG 05, 2018
Genetics & Genomics
AUG 05, 2018
Newly ID'ed Lung Cell Changes Our Understanding of Disease
This rare type of cell seems to play a major role in cystic fibrosis....
Loading Comments...