APR 15, 2018 8:11 AM PDT

Finding may Reveal a Fundamental Cellular Behavior

WRITTEN BY: Carmen Leitch

There are millions of molecules floating around cells and scientists have long wondered how they organize into structures and go where they need to. In 2008, researchers at the Marine Biological Laboratory (MBL) found that phase separation might be a critical part of that process. Just like oil and water don’t mix, it was proposed as a way of creating order from chaos. New work has shown that there are also criteria for deciding which molecules end up in the same place together - as they condense into droplets.

Distinct protein droplets form with different RNAs

This study, which was reported in Science, indicates that the 3D conformation of RNA molecules impacts which ones gather in the same droplet. This work was completed over five years of summer work by the senior author, Amy S. Gladfelter of University of North Carolina, Chapel Hill, as part of the HHMI/HCIA Summer Institute at the MBL. 

This theory is still generating controversy. It could open up new avenues of thinking about disease, however; the research has shown that in some diseases, these liquid droplets in cells solidify. It may help explain a phenomenon scientists have been observing in many different cell types, as RNA and proteins condense into these droplets.

 "RNA molecules will end up in different droplets if their secondary (3D) structures are shielding any complementarity. But with the RNAs that condense into the same droplet, their complementary sequences are really exposed, so they can find each other and base pair to make a higher-order interaction," Gladfelter explained.

In fungal cells, Gladfelter and colleagues found that the 3D structure of RNAs enables them to bind together by base-pairing, or can prevent them from doing so. This selectivity could reveal what underlies the creation of protein-RNA condensates. These droplets may be hubs that help stimulate reactions in the cell, or keep certain molecules out of the way when necessary.

Previous work by Gladfelter has shown that fungal cells use liquid-liquid separation so two different biological processes can proceed. "But we need more examples of where it really matters for cell function," Gladfelter added. It will be important to demonstrate "that this is not just something that proteins and RNAs can do, but that nature has selected for it," she noted.

Protein-RNA droplets dynamically fuse and move around the cytoplasm of the multinucleate fungus, Ashbya gossypii

It may also provide insight into disease states that involve aberrant protein behavior, like prion disorders, ALS, Alzheimer's, Huntington’s and Parkinson's diseases. This study "helps us understand how the right components get recruited to droplets so cells can potentially avoid this transition to an aberrant, solid state,” said Gladfelter.

"This is one of many examples in which perceptive MBL students and faculty made a significant contribution to biological research. And, importantly, the initial observation was intensively followed up through an innovative, multidisciplinary collaboration, the HHMI/HCIA Summer Institute at MBL. These are the kinds of synergies that generate extraordinary science at MBL," concluded David Mark Welch, MBL's Interim Director of Research.

 

Sources: AAAS/Eurekalert! Via MBL, Science

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 05, 2020
Immunology
Intercepting Cancer Cells Before They Can Dodge the Immune System
AUG 05, 2020
Intercepting Cancer Cells Before They Can Dodge the Immune System
The battle that naturally occurs between the body’s immune system and cancerous cells is one that scientists have ...
AUG 18, 2020
Cardiology
A Key Juncture Between Diabetes and Heart Repair
AUG 18, 2020
A Key Juncture Between Diabetes and Heart Repair
Patients with diabetes are often at increased cardiovascular risk. Recent research points to a possible new target for t ...
AUG 17, 2020
Cell & Molecular Biology
A New Kind of Taste Cell is Discovered
AUG 17, 2020
A New Kind of Taste Cell is Discovered
Once, it was thought that the tongue had zones that sensed different tastes. Researchers have learned a lot more about h ...
SEP 05, 2020
Cardiology
Psoriasis and Hyperlipidemia May Put You at Risk for Chronic Kidney Disease
SEP 05, 2020
Psoriasis and Hyperlipidemia May Put You at Risk for Chronic Kidney Disease
The sad truth is that many diseases not only carry their own symptoms but can also increase the risk of the onset of ano ...
SEP 01, 2020
Cell & Molecular Biology
Smell Cells Are Especially Good at Fighting the Flu
SEP 01, 2020
Smell Cells Are Especially Good at Fighting the Flu
All over the body, cells line organs and vessels, forming protective barriers. But pathogens like the flu have gained th ...
SEP 08, 2020
Immunology
Regular Opioid Users Are More Sensitive to Pain, Immune System to Blame
SEP 08, 2020
Regular Opioid Users Are More Sensitive to Pain, Immune System to Blame
Opioids are painkillers such as oxycodone (OxyContin and Percocet) and hydrocodone (Vicodin) that are synthesized to mim ...
Loading Comments...