JUL 20, 2018 12:35 PM PDT

X-ray Images to Get Colors

WRITTEN BY: Daniel Duan

A colored X-ray image of a human wrist (MARS Bioimaging)

In the near future, the X-ray images from your doctor's office will no longer be just black and white, at least that's what MARS Bioimaging Ltd, an imaging company based in New Zealand, hopes. Why are they so confident? A CERN (yes the organization that built the Large Hadron Collider)-developed technology called Medipix3 that can capture a three-dimensional color x-ray picture of the human body.

Wait a minute, color is, in fact, a characteristic of light (or electromagnetic radiation to be scientifically accurate) as your common sense may alarm you. The color spectrum of visible light rays is way off from that of x-ray. 
 
The visible light comes with the range of wavelengths humans can perceive approximately from 390 to 700 nm. Within it, red is somewhere between 700 and 635 nm, and blue at the other end between 490 and 450 nm. Yet, the spectrum of x-ray is nowhere close: from 0.01 to 10 nm.
 
So how can a "color" x-ray be possible? You can get a hint from an airport or security x-ray scanner. In those images, items of different densities are assigned with different colors by computing algorithms: blue and black suggest the material could be metal, hard plastics, or alloys; orange indicates organic or even biological materials like cotton fabrics, food, or explosives; and green is for thin plastics and rubber. In general, the denser the material, the more radiation gets absorbed and blocked. 

A similar principle applies in this color x-ray scanner. When x-rays of various spectra get beamed at a human subject, the Medipix chips which are "high-resolution, high-contrast" cameras capture individual photonic particle that goes through the body and hit their pixels. The electronic shutter allows the detector to identify photons of different energy level, whose energy signature enables the scanner to differentiate and assign colors to a variety of tissues such as muscle, fat, water, and bones. Measurements of the photons are then processed with computer algorithm for the construction of a 3-D color image.

Color is a powerful indicator. Compared to grayscale x-ray images, full-color images allow doctors to conduct more accurate diagnoses. When discussing the advantage of using Medipix3 chip in medical diagnostic imaging, Phil Butler a co-developer of the x-ray scanner and a scientist of MARS Bioimaging Ltd said: "Its small pixels and accurate energy resolution mean that this new imaging tool is able to get images that no other imaging tool can achieve".

The Medipix technology was initially designed for particle tracking purpose at the Large Hadron Collider. After two decades of work and improvement, the chips have demonstrated a great potential for applications outside of high-energy physics. 

Preliminary studies have been conducted in oncology, bone and joint disorder, cardiovascular diseases using a smaller version of the new technology. Clinical trials of this revolutionary technology on rheumatology and orthopedic patients are expected to happen later this year.

Scientists develop 3D, full-color x-rays (Engadget)

Source: Engadget/CERN

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
MAY 19, 2020
Space & Astronomy
The Science Behind Eclipses
MAY 19, 2020
The Science Behind Eclipses
A particularly convenient coincidence exists between the relative sizes of the Sun and the Moon, and their distance from ...
MAY 28, 2020
Chemistry & Physics
Expandable Resin Solves the Size Problem of 3D Printing
MAY 28, 2020
Expandable Resin Solves the Size Problem of 3D Printing
One of the current limitations of using a 3D printer is the size of the product. For someone to print a large part, they ...
JUN 24, 2020
Chemistry & Physics
How to Enable Computers to Solve Increasingly Complex Problems? Make Them "Think" Like a Metal
JUN 24, 2020
How to Enable Computers to Solve Increasingly Complex Problems? Make Them "Think" Like a Metal
In metal works, the term annealing refers to a treatment with heat that increases the elasticity of a metal material. Si ...
JUL 11, 2020
Chemistry & Physics
Understanding the geodynamo
JUL 11, 2020
Understanding the geodynamo
Have you ever heard of the geodynamo? Perhaps not, but its presence has certainly had a huge impact on your life. The th ...
JUL 26, 2020
Chemistry & Physics
This hydrogel memorizes and forgets, just like our brains
JUL 26, 2020
This hydrogel memorizes and forgets, just like our brains
A hydrogel developed by researchers at Hokkaido University is the first material to mimic the human brain’s capabi ...
JUL 31, 2020
Chemistry & Physics
Advancing Nuclear Fusion by Taming the "Chirping" Plasma
JUL 31, 2020
Advancing Nuclear Fusion by Taming the "Chirping" Plasma
2020 turns out to a year of breakthrough for nuclear fusion. The world's largest fusion project ITER (International ...
Loading Comments...