AUG 21, 2018 6:00 AM PDT

Canada's Small Reactor Demo Projects: Ready, Set, Go!

WRITTEN BY: Daniel Duan

CNL Chalk River Laboratories

The next big thing in the nuclear industry is "small" – the small modular reactor (SMR) that is.

Through decades of maturation, many current SMR designs are much more than just a shrunken version of traditional, large-scale reactors. They generate power with high efficiency, have inherent safety mechanisms, require minimum construction and a small operating crew, and are therefore considered by many to be a viable option to produce low-carbon electricity and combat climate change.

Last summer, Canadian Nuclear Laboratories (CNL), a government contractor for the crown corporation Atomic Energy of Canada Limited (AECL) launched a public consultation for parties that are interested in pursuing SMR technology. The organization later followed up with an invitation to SMR proponents, research institutes and industries alike, to build one or more demo reactor units at their Chalk River and Whiteshell sites.

Canada is a pioneer in nuclear science and has a rich history of advancing reactor technology. Developed by AECL in the 1950s, CANDU (synonym for Canada Deuterium Uranium) is a pressurized heavy-water based nuclear reactor. Successful early deployment and sequential design improvements have made CANDU a popular option in nuclear power generation. To this day there are 31 such reactors in use in Canada and nine other countries.

A fuel rod bundle fabricated in CNL fuel fabricating facilityCanada is a vast country, and a lot of small communities are located far away from urban centers, making them hard to reach through power lines and road transportation. Moreover, the country's extractive industrial operations such as mine sites or the oil sands plants are often off-grid and rely on diesel generators for electricity. Canada's urgent need for a "plug-and-play" type of reactor power generation device drives a keen interest in pursuing SMR technology.

Related: the role of small modular reactors in the future of energy

This June, CNL announced that they had received responses from four international and domestic proponents who are seeking to construct demo SMR units at their sites.

In an interview with Labroots, Dr. Bronwyn Hyland, CNL's SMR Program Manager discussed the current status of the SMR Demonstration Projects. She said that CNL has performed generic siting studies in its operating facilities, Chalk River Laboratories and Whiteshell Laboratories. Although multiple potential locations suitable for construction of demo SMRs have been identified, it is still too early to speculate how many and what type of units will be established.

Not intending to build a new small reactor on their own, CNL offers SMR proponents a licensed nuclear site for construction, a point emphasized by CNL in their invitation to SMR developers. However, the established regulatory, safety, security, utility service and scientific infrastructure at CNL-managed sites can assist the interested parties in building and testing the demo units.

Their confidence in moving the projects forward lies in their history with small reactors. Whiteshell Laboratories hosts the WR-1, a proof-of-concept low output reactor that innovatively uses an organic, oily substance as the coolant, as compared to the usual heavy water. Another successful example is the SLOWPOKE (Safe LOW-POwer Kritical Experiment) reactor. It is a super-safe, low-energy, research reactor designed by Atomic Energy of Canada Limited (AECL) in the late 1960s. Because of its innate safety features, it has been deployed in universities and research institutions that are located in densely populated urban areas.

According to Dr. Hyland, the SMR demonstration unit(s) can provide synergistic benefits to the expansion of CNL's own hydrogen generation program, one of seven long-term strategic initiatives the nuclear contractor is pursuing.

CNL's Hydrogen LabWith numerous versions of hydrogen fuel technology being developed, there's little doubt that hydrogen will join electricity as an important energy carrier. Although most hydrogen is currently produced using fossil fuel-based petrochemical processes, the migration of its production to renewable energy sources has been widely tested and is expected to take off in the near future. CNL's vision of bundling hydrogen production and SMRs falls in line with the country's desire to reduce its carbon footprint yet satisfy the growing need for low-carbon energy.

South of the border, the growth of SMR technology has also gained substantial traction. NuScale, an Oregon-based small reactor developer, has obtained phase I approval on its SMR design by the U.S. Nuclear Regulatory Commission. What's more, their first customer has even placed an order.

Concerning the timeline of their projects, CNL is cautiously optimistic. The design of the small reactor(s) will be subject to final approval by the Canadian Nuclear Safety Commission, even after all the technical obstacles are overcome, according to Hyland. They expect at least one demonstration unit to be built on a CNL site by 2026, at the earliest.

Canadian Nuclear Laboratories - Overview (CNL)

Source: CNL

[This article contains Labroots original contents]

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
DEC 22, 2019
Space & Astronomy
DEC 22, 2019
How Astronomers Measure Distances to Stars
Extra stellar systems are so far away from our own that we couldn’t even hope of developing a tape measure long enough to determine how far away they...
FEB 17, 2020
Chemistry & Physics
FEB 17, 2020
Graphene, the Toughest 2-D Material
An allotrope of carbon, graphene is a two-dimensional (2D) sheet of a nearly endless hexagonal network. In many of the studies conducted on this Nobel-winn...
FEB 21, 2020
Chemistry & Physics
FEB 21, 2020
Down the 50km Quantum Memory Lane: Scientists Push the Limit of Quantum Communication
Quantum communication is also known as the "unhackable" way of transmitting any information. Deeply rooted in quantum mechanics, the state-of-art...
MAR 15, 2020
Space & Astronomy
MAR 15, 2020
This Exoplanet Rains... Iron!?
Many of us take the Earth and its many ‘normal’ characteristics for granted, but there are so many exoplanets in the universe around us with th...
MAR 19, 2020
Chemistry & Physics
MAR 19, 2020
The "Android" Approach to Nuclear Power
Nuclear power plants, whether you like them or not, produce a significant portion of the carbon-free electricity at the moment worldwide. With a wave of hi...
MAR 24, 2020
Space & Astronomy
MAR 24, 2020
How Much Do You Know About the Solar System?
Our solar system is only one out of hundreds of stellar systems residing in the Milky Way galaxy. It’s comprised of the Sun and eight known planets,...
Loading Comments...