JAN 19, 2019 1:47 PM PST

KAGRA, LIGO's Gravitational Wave-hunting Cousin in Japan

WRITTEN BY: Daniel Duan

KAGRA's Underground Tunnel (ICRR)

Opening in late 2019, the Kamioka Gravitational Wave Detector (KAGRA) is a gravitational wave (GW) detecting facility at Gifu Prefecture in central Japan. Funded and run by the Institute for Cosmic Ray Research (ICRR), KAGRA is the world's fourth major GW detector and the first one that is built underground.

The phrase gravitational wave and the acronym LIGO made headlines in 2016, as in the first time in history scientists have obtained evidence for the existence of GWs. This verified a long-held belief of Albert Einstein, that gravitational force conforms to the theory of general relativity and it takes wave-form.

As GWs propagate, they stretch and shrink the distance between any two points in the space-time fabric on their way. The advanced LIGO collaborations made historical detection of GW using a technique called laser interferometry. It allows scientists to detect a spatial fluctuation that is less than a ten-thousandth diameter of a proton in LIGO's 4-km (2.5 miles) "arms" (vacuum pipes that allow the laser to travel). That is equivalent to measuring the distance from Earth to our nearest neighbor star Proxima Centauri with an accuracy smaller than the width of a human hair.

KAGRA Structure Scheme (ICRR)

Built over 200 meters (656 feet) deep underneath Mount Ikenoyama, KAGRA has two 3-km (1.9 miles) long "arms". But KAGRA isn't just a replica of its predecessors. Its two arms/tunnels stretch deep underground, a feature that can reduce seismic noises background by at least two orders of magnitude. What's more, its cryogenically cooled mirrors, which work in an ultra-cold 20 Kelvin (-253°C or -423.4°F) environment, can reduce measurement noise even further.

With the inauguration of KAGRA, Japanese researchers hope that their new facility can strengthen the status of Gravitational Wave Astronomy, a brand new discipline. Working with a global network of telescopes, they look forward to contributing to new discoveries in GW science.

Kamioka Gravitational Wave Detector (NAOJ)

Source: Nature

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
FEB 04, 2021
Cell & Molecular Biology
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
FEB 04, 2021
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
Just like oil and water are both liquids but they don't coalesce into one, it's thought that cells use phase separation ...
MAR 07, 2021
Cell & Molecular Biology
Why Are Egg Cells So Large?
MAR 07, 2021
Why Are Egg Cells So Large?
If you've ever seen a video of a sperm cell fertilizing an egg cell, you've probably noticed the huge size difference. T ...
MAR 16, 2021
Chemistry & Physics
Is your air purifier making your air more polluted?
MAR 16, 2021
Is your air purifier making your air more polluted?
A study from a collaboration of researchers at Illinois Tech, Portland State University, and Colorado State University h ...
APR 14, 2021
Cannabis Sciences
Why Delta-8-THC is Different to Regular THC
APR 14, 2021
Why Delta-8-THC is Different to Regular THC
In recent months, a cannabinoid known as delta-8-tetrahydrocannabinol (THC) has increased in popularity. While similar t ...
MAY 12, 2021
Chemistry & Physics
Lithium-metal batteries vs lithium-ion
MAY 12, 2021
Lithium-metal batteries vs lithium-ion
Although the world is set to leave fossil fuels behind and charge full speed ahead towards the electric revolution, the ...
MAY 23, 2021
Space & Astronomy
More Accurate Clocks Create More Disorder in the Universe
MAY 23, 2021
More Accurate Clocks Create More Disorder in the Universe
Physicists at the University of Oxford in the UK have conducted an experiment that suggests the more accurately clocks t ...
Loading Comments...