APR 18, 2019 9:40 AM PDT

The Perplexing Nature of Time (Part II): Paradox in the Quantum Realm

WRITTEN BY: Daniel Duan

(sakkmesterke/Shutterstock)

Breaking the time asymmetry remains a fundamental yet tantalizing scientific challenge. At the macroscopic level the quest has so far turned out to be fruitless, but on the other hand in the subatomic world where quantum physics reign supreme and time is believed to be symmetric, scientists seem to be gaining ground in experiments that involve quantum circuitry and qubit (quantum bit, the equivalent of the classical binary bit a two-state computing device) computing processor

In the newsmaking study mentioned in Part I, working with their collaborators from the U.S. and Switzerland, scientists at the Moscow Institute of Physics and Technology returned an electron back into the initial quantum state in an IBM Quantum Computer.

According to Erwin Schrödinger, a pioneer in quantum field theory and the owner of the world's most famous feline, the position of an electron within an atom cannot be determined with precision, however, one can determine the area outside the nucleus where electron may likely be bouncing around, with the help of probability calculation. 

The second law of thermodynamics dictates that entropy increases over time thus a closed system becomes more chaotic. As a result, an electron spreads outwards into a bigger region of probability, also known as the "smeared out" evolution. Without any artificial intervention, there is only a one per 4.3 × 10^17 second (basically in the universe lifetime) odds for any single electron to spontaneously reverse course and goes back into its starting position a second ago. 

The World’s First Integrated Quantum Computing System (IBM Research)

By running a quantum algorithm in the IBM Quantum Computer, the team of physicists and computer experts managed to send the two-qubit quantum processor back into the initial state microseconds before, with an 85 % probability. When the number of qubits was increased to three, they observed more errors and only succeeded with a 50% odds. 

But is their results any true indication of a true time-reversal? The researchers themselves have doubts. "It remains to be seen, however, whether the irreversibility of time is a fundamental law of nature or whether, on the contrary, it might be circumvented." the authors stated in their Scientific Reports article.

Therefore, this study is unlikely to provide any inspiration for a time travel machine. As a matter of fact, another study published in Physical Review X in late 2018 had already proved that the arrow of time is simply irrelevant to quantum computing.

The authors, a group of quantum physicists and computing scientists from Singapore, UK, US, and Austria, compared the usage of memory in physics simulation between classical and quantum computing systems. They found that on conventional computers to create cause-and-effect reversal predictions required much more resource, whereas the use of memory is essentially the same in either direction of the arrow of time when the simulation is done on a quantum computing system. In other words, our perception of time, which largely based on classical physics, just doesn't match with what goes on in the quantum world.

With all considered, we are still far from revealing the mysterious nature of time, and still struggling to figure out actually how time works at different levels. It seemed that time travel is just another fancy that would never be realized, or is it?

Scientists Have Reversed Time In A Quantum Computer (Newsweek)

Source: EurekAlert/TNW

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
JUN 30, 2020
Chemistry & Physics
Axion: Could the Curious Particle "Kill Two Birds with One Stone"
JUN 30, 2020
Axion: Could the Curious Particle "Kill Two Birds with One Stone"
Physicists often ponder in an unusual way: they use one unsolved problem as a hypothetic solution to another, hoping to ...
JUN 29, 2020
Chemistry & Physics
Infrared-free electron laser facilitates the conversion of cellulose into biofuel
JUN 29, 2020
Infrared-free electron laser facilitates the conversion of cellulose into biofuel
A collaboration of Japanese scientists has used laser technology called infrared-free electron laser (IR-FEL) to facilit ...
AUG 06, 2020
Chemistry & Physics
The fluid dynamics of injection-induced earthquakes
AUG 06, 2020
The fluid dynamics of injection-induced earthquakes
While injection-induced earthquakes have become commonplace in oil fields where wastewater is pumped deep into the Earth ...
AUG 27, 2020
Chemistry & Physics
Pheromone Molecule at the Center of Global Locusts Crisis
AUG 27, 2020
Pheromone Molecule at the Center of Global Locusts Crisis
Since earlier this year, agriculture and food production in the developing world have been taking heavy damages from an ...
SEP 15, 2020
Chemistry & Physics
Chemistry Grad Students Be Warned: a Robotic Takeover?
SEP 15, 2020
Chemistry Grad Students Be Warned: a Robotic Takeover?
In a recent news release, the research arm of IBM announced that their Zurich team has developed an autonomous ...
SEP 16, 2020
Chemistry & Physics
Sub-nanoparticle catalysts prove effective
SEP 16, 2020
Sub-nanoparticle catalysts prove effective
Researchers at the Tokyo Institute of Technology have developed a technique to control the size and composition of sub-n ...
Loading Comments...