APR 18, 2019 9:40 AM PDT

The Perplexing Nature of Time (Part II): Paradox in the Quantum Realm

(sakkmesterke/Shutterstock)

Breaking the time asymmetry remains a fundamental yet tantalizing scientific challenge. At the macroscopic level the quest has so far turned out to be fruitless, but on the other hand in the subatomic world where quantum physics reign supreme and time is believed to be symmetric, scientists seem to be gaining ground in experiments that involve quantum circuitry and qubit (quantum bit, the equivalent of the classical binary bit a two-state computing device) computing processor

In the newsmaking study mentioned in Part I, working with their collaborators from the U.S. and Switzerland, scientists at the Moscow Institute of Physics and Technology returned an electron back into the initial quantum state in an IBM Quantum Computer.

According to Erwin Schrödinger, a pioneer in quantum field theory and the owner of the world's most famous feline, the position of an electron within an atom cannot be determined with precision, however, one can determine the area outside the nucleus where electron may likely be bouncing around, with the help of probability calculation. 

The second law of thermodynamics dictates that entropy increases over time thus a closed system becomes more chaotic. As a result, an electron spreads outwards into a bigger region of probability, also known as the "smeared out" evolution. Without any artificial intervention, there is only a one per 4.3 × 10^17 second (basically in the universe lifetime) odds for any single electron to spontaneously reverse course and goes back into its starting position a second ago. 

The World’s First Integrated Quantum Computing System (IBM Research)

By running a quantum algorithm in the IBM Quantum Computer, the team of physicists and computer experts managed to send the two-qubit quantum processor back into the initial state microseconds before, with an 85 % probability. When the number of qubits was increased to three, they observed more errors and only succeeded with a 50% odds. 

But is their results any true indication of a true time-reversal? The researchers themselves have doubts. "It remains to be seen, however, whether the irreversibility of time is a fundamental law of nature or whether, on the contrary, it might be circumvented." the authors stated in their Scientific Reports article.

Therefore, this study is unlikely to provide any inspiration for a time travel machine. As a matter of fact, another study published in Physical Review X in late 2018 had already proved that the arrow of time is simply irrelevant to quantum computing.

The authors, a group of quantum physicists and computing scientists from Singapore, UK, US, and Austria, compared the usage of memory in physics simulation between classical and quantum computing systems. They found that on conventional computers to create cause-and-effect reversal predictions required much more resource, whereas the use of memory is essentially the same in either direction of the arrow of time when the simulation is done on a quantum computing system. In other words, our perception of time, which largely based on classical physics, just doesn't match with what goes on in the quantum world.

With all considered, we are still far from revealing the mysterious nature of time, and still struggling to figure out actually how time works at different levels. It seemed that time travel is just another fancy that would never be realized, or is it?

Scientists Have Reversed Time In A Quantum Computer (Newsweek)

Source: EurekAlert/TNW

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
OCT 16, 2019
Chemistry & Physics
OCT 16, 2019
Outlandish Ideas to Fight Climate Change: How Credible are They?
Boosting investment in renewable energy and reducing the use of fossil fuel are the two commonly acceptable measures to combat climate change. However, sci...
DEC 05, 2019
Chemistry & Physics
DEC 05, 2019
Cryonics: Science or Science Fiction?
Cryonics ("Cryo" related to Greek word for "cold") is a highly controversial method to deep freeze and store a deceased human body, hop...
JAN 16, 2020
Chemistry & Physics
JAN 16, 2020
Self-healable Sweat Sensor Fears No Wear and Tear
Sweat can provide a lot of information about a person's health. One of the current trends in wearable technology is to incorporate sweat sensing mechan...
JAN 21, 2020
Space & Astronomy
JAN 21, 2020
2020 Space Research: What to Expect
2019 was one of the most exciting years for space fans. Therefore it’s hard to believe that 2020 could bring something even more fascinating. Ho...
JAN 26, 2020
Space & Astronomy
JAN 26, 2020
Betelgeuse Continues to Dim, But Why?
A nearby red supergiant star by the name of Betelgeuse has long been popular among astronomers, not only because of its massive size and close proximity to...
FEB 13, 2020
Chemistry & Physics
FEB 13, 2020
Equations for Chaos: A Mathematic Paradox
Equations are ordered, elegant mathematical constructs used to describe specific patterns. Can you imagine some formulas depict the very opposite: chaos an...
Loading Comments...