MAY 02, 2019 10:36 AM PDT

The Accidental Discovery of An Exotic Nuclear Decay


Xenon-filled dark matter detector (The XENON collaboration)Numerous scientific discoveries were made by accident. Sometimes, the findings even crossed into a different field other than the one scientists were exploring.

The XENON collaboration is formed by an international group of astrophysicists, whose interest is to search for "dark matter", an elusive entity that supposedly provides our universe massive gravitational pull so it won't expand out of control. In their underground research facility in central Italy, the researchers accidentally observed a rare radioactive decay process that would have otherwise gone unnoticed for many years to come, all thanks to their dark matter detector that's filled with 3,500 kg (7,716 lb) of liquid xenon. 

Xenon-124, an isotope whose nucleus is made up of 54 protons and 70 neutrons, has always been considered a stable form of the element. The consistent detection of an unknown source of X-rays and Auger electrons at the XENON facility caught the researchers' attention. With over one year of direct repeated measurement, they successfully confirmed that the xenon in their detector undergoes a rare form of radioactive decay, known as two-neutrino double electron capture. 

Electron capture is a common form of beta decay, which involves the nucleus of an atom snatching an electron from its own "orbit" and brings it inside. Once the electron came into contact with a proton, the two forms a neutron, a subatomic particle weighed the same as a proton but have no charge. At the same time, a neutrino is sent out of the nucleus.

Two-neutrino double electron capture is similar to what mentioned above but simultaneously happens to two electron-proton pairs within the same atom. After having two of its protons converted, a decayed xenon-124 atom turns into tellurium-124, an isotope with exact same atomic weight but less +2 charge in its nucleus. The half-life of xenon-124 was estimated as long as 1.8 × 10^22 years. That's whopping one trillion times the age of our universe. 

Just when you think that the decay of xenon-124 takes a really long time, it is not the isotope with the longest half-life. The champion is tellurium-128, whose half-life is over 160 trillion times greater than the age of the universe, at 2.2 x 10^24 years. 

What's more intriguing, tellurium-128 undergoes double beta decay, a process that turns two neutrons into two protons and releases two electrons. It's comparable to the decay of xenon-124 in the sense that both lose a pair of electrons. But in tellurium-128's case, the electrons travel in a reversed direction. 

The surprising discovery of double electron capture would help scientists test various nuclear models and allow them to carry out a more accurate prediction about the values of the nuclear matrix elements, a quantity that plays an indispensable role in nuclear physics.

This research was recently published in the journal Nature.

While Looking for Dark Matter, Scientists Discover Something Way Cooler (Anton Petrov)

Source: Nature

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
AUG 25, 2019
Chemistry & Physics
AUG 25, 2019
Why Old Buildings Like the Notre Dame Cathedral Burn So Easily
The massive fire that recently impacted the historic Notre Dame Cathedral in Paris was all over the news this past week. It was as alarming as it was tragi...
AUG 25, 2019
Plants & Animals
AUG 25, 2019
Can Lobster Shells Be Used to Produce Biodegradable Plastics?
Plastic is becoming a severe problem for the environment, and that’s precisely why researchers are trying so hard to devise biodegradable alternative...
AUG 25, 2019
Earth & The Environment
AUG 25, 2019
The Annual Gulf of Mexico Dead Zone Forecast to be the Size of Massachusetts
According to a news release from The National Oceanic and Atmospheric Association (NOAA), this summer’s hypoxic zone in the Gulf of Mexico will be ap...
AUG 25, 2019
Chemistry & Physics
AUG 25, 2019
Hydrogen, the Element of Our Energy Future? (Part II)
According to the International Energy Agency, the worldwide hydrogen market is expected to reach over $150 billion US dollar by the year 2022 under th...
AUG 25, 2019
Chemistry & Physics
AUG 25, 2019
Mysterious Cosmic Radio Signal Pinpointed to its Source
Releasing the 80 years-worth entire solar energy in just a tiny fraction of a second, fast radio burst (FRB) is the one of most energetic and mysterious ph...
AUG 25, 2019
Chemistry & Physics
AUG 25, 2019
Self-deoxygenating Glassware: Sugar In, Oxygen Out
Oxygen is often the headache for chemists since its ubiquitous presence in our environment, and its ability oxidize sensitive compounds. A team of chemistr...
Loading Comments...