JUN 20, 2019 6:00 AM PDT

Hybrid Microorganisms Turn CO2 to Eco-plastics and Biofuels

WRITTEN BY: Daniel Duan

(Pixabay)

The humankind has been taking advantage of the metabolic mechanism of microbes to produce useful materials, anything from alcohols to antibodies.

A group of researchers at the University of Colorado at Boulder (CU Boulder) have developed a way to manipulate bacteria so that they can produce biofuel and degradable bioplastics using airborne carbon dioxide (CO2), water vapor, and nitrogen, in a light-driven biochemical reaction. This research, albeit still in its early phase, can help combat climate change by reducing CO2 and produce carbon neutral products at the same time.

Carbon sequestration is the long-term storage of carbon dioxide in a physical or chemical process, in order to stop or delay the accumulation of greenhouse gas. For example, planting trees is a traditional form of carbon sequestration, but it is not efficient, and there is no immediate economic benefit in the process.

Industrial researchers have been looking for ways to produce fuel-like products and rapidly pull CO2 from the atmosphere at the same time. Earlier this year, scientists at the Karlsruhe Institute of Technology (KIT) and University of Toronto (UofT) studied and verified the feasibility of using existing ventilation and air conditioning system to produce "crowd oil", a synthetic hydrocarbons fuel. Their process requires only CO2, water vapor, and thermal energy, all of which can be harvested from air vents.

The CU Boulder researchers went in from a microbiological angle. They had bacteria absorb different types of quantum dots (QDs), which were coupled with specific production enzymes inside the bacteria. Since QDs, which are tiny semiconductor particles, have different excitation wavelength ranging from ultraviolet to near-infrared, they can utilize photonic energy to drive the production enzymes, which in term turn CO2, water, and nitrogen into fuels molecules such as isopropanol (IPA), 2,3-butanediol (BDO), C11-C15 methyl ketones (MKs), and hydrogen (H2), as well as other small chemical molecules and polyhydroxybutyrate (PHB), a degradable plastic.

Biodegradable plastic generated from the hybrid microbes (Nagpal Lab/CU Boulder)

“The innovation is a testament to the power of biochemical processes,” said Prashant Nagpal, the principal investigator behind the research and a biochemist at CU Boulder in a press release.

“We’re looking at a technique that could improve CO2 capture to combat climate change and one day even potentially replace carbon-intensive manufacturing for plastics and fuels,” he added.

Although the conversion process would still need improvement and the research won't find any practical use any time soon, admitted Nagpal, but using hybrid microbes as tiny solar-powered factories could inspire more similar environmentally friendly community based-projects.

This research has been accepted for publication in the Journal of the American Chemical Society

Interested in finding out more about the science of engineering biological systems to create carbon-neutral products for a range of applications? Check out this video from iBiology Techniques

Synthetic Biology: Engineering Microbes to Solve Global Challenges - Jay Keasling (iBiology Techniques)

Source: Science Daily

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
DEC 01, 2019
Cell & Molecular Biology
DEC 01, 2019
Using CRISPR/Cas9 to Modify Chemical Reactions in Cells
Since the CRISPR gene editor was created, researchers around the world have tweaked and refined the tool to use it in a variety of ways....
DEC 04, 2019
Cancer
DEC 04, 2019
Photon up-conversion for new cancer treatments
Scientists from the University of California, Riverside and The University of Texas at Austin have made a breakthrough in materials science that has signif...
JAN 07, 2020
Space & Astronomy
JAN 07, 2020
Everything You Need to Know About Exoplanets
While most people are familiar with the planets residing in our solar system from lessons taught back in grade school, it’s important to remember tha...
JAN 29, 2020
Chemistry & Physics
JAN 29, 2020
Milk, a Controversial Food?
When it comes to foods with a controversial reputation, milk isn't your usual suspect. First and foremost, we humans are mammals and breast milk is a q...
FEB 03, 2020
Space & Astronomy
FEB 03, 2020
How NASA's MAVEN Spacecraft is Studying Mars' Ionosphere
If you ever listen to the radio and experience a phenomenon in which the broadcast sounds garbled or as if another radio station is attempting to play over...
MAR 28, 2020
Chemistry & Physics
MAR 28, 2020
The implications of electrifying aluminum are huge
What fun it is to be a scientist! That’s what researchers from The Ohio State University must have been thinking throughout their recent endeavors to...
Loading Comments...