OCT 17, 2019 7:34 AM PDT

A Natural, Eco-friendly Pesticide Synthesized for the First Time

WRITTEN BY: Daniel Duan

A Persea Indica plant (Wikimedia Common)

A group of organic chemists at California Institute of Technology has come up with a synthesis method to produce a naturally existing pesticide named perseanol for the first time, a feat involving a 16-step chemical procedure. 

So why did they go through so much trouble to obtain a single molecule?

Perseanol is a polycyclic compound found in the evergreen tree genus PerseaPersea Americana, or avocado, is a well-known example. First discovered back in the 1990s, perseanol exerts its insecticidal effects by paralyzing the muscular tissues of pests, in the same fashion as another natural pesticide ryanodine. Both perseanol and ryanodine can bind ryanodine receptors, a type of calcium channel, with high affinity. The action blocks the flow of calcium ions, disabling the contraction of muscle cells. 

Ryanodine can paralyze pets, cattle, and humans because its toxicity is non-discriminatory between mammals and insects. On the other hand, perseanol's toxicity is specific to insects, making it a safer pesticide. But to obtain a large quantity of the compound isn't a simple task. Scientists have identified a large variety of phytochemicals in Persea plant extracts, and perseanol does not appear in abundance. As the agriculture industry eagerly wishes to replace chemical pesticides with safe and naturally derived substitutes, there's alway a strong interest to chemically synthesize perseanol.  

Led by chemistry professor Sarah E. Reisman, researchers at Caltech have been working on the total synthesis of the eco-friendly pesticide. Their research playbook borrowed a chapter from a group at the University of Sherbrooke, who had successfully built a compound called ryanodol from the ground up. Ryanodol shared structural similarity with both ryanodine and perseanol. 

The Caltech team first synthesized two main parts of the perseanol molecule, one with an epoxide functional group and the other as an anion. When the two oppositely-charged pieces met, they bound to each other almost instantly, forming anhydroperseanol the precursor to the final product. Then the chemists spent eight more steps attaching side groups to complete the structure of perseanol.

It is evident that the complexity of this synthesis process makes it difficult to produce perseanol in big bulk for agricultural purposes. However, the chemists believed that their research provides some useful insights for the synthesis of similar compounds. Moreover, the amount of perseanol they obtained is sufficent for toxicological studies to better the understanding of its insecticidal effect.

This latest research is published in the journal Nature.

Total synthesis of perseanol — a natural insecticide (The Cyclo Edition)

Source: C&EN

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Researchers Remotely Trigger the Release of Hormones
It may one day be possible to treat hormone-related diseases using this method.
MAY 01, 2020
Chemistry & Physics
MAY 01, 2020
John Conway: the Late Maths Legend and His Game of Life
If maths is the only universal language, then John Horton Conway is among the few who can speak it perfectly. Unfortunat ...
MAY 05, 2020
Clinical & Molecular DX
MAY 05, 2020
A High Resolution Glimpse Inside the Brain
Imagine a future where we could “see” inside the human brain at stunning high resolution, detecting the earl ...
MAY 25, 2020
Plants & Animals
MAY 25, 2020
Ever Wonder How Some Fish Produce Electricity?
When you hear the term ‘electric fish,’ the first thing that probably comes to mind is the infamous electric ...
JUN 09, 2020
Chemistry & Physics
JUN 09, 2020
Can Time Flow Backward? Very Unlikely According to a Recent Black Hole Simulation
The idea of time in physics is often associated with the second law of thermodynamics, which states that the entropy of ...
JUN 23, 2020
Infographics
JUN 23, 2020
Frighteningly Fast: 5G by the Numbers
5G is the fifth-generation technology for cellular networks and will likely be the successor to the 4G (fourth-generatio ...
Loading Comments...