OCT 17, 2019 7:34 AM PDT

A Natural, Eco-friendly Pesticide Synthesized for the First Time

WRITTEN BY: Daniel Duan

A Persea Indica plant (Wikimedia Common)

A group of organic chemists at California Institute of Technology has come up with a synthesis method to produce a naturally existing pesticide named perseanol for the first time, a feat involving a 16-step chemical procedure. 

So why did they go through so much trouble to obtain a single molecule?

Perseanol is a polycyclic compound found in the evergreen tree genus PerseaPersea Americana, or avocado, is a well-known example. First discovered back in the 1990s, perseanol exerts its insecticidal effects by paralyzing the muscular tissues of pests, in the same fashion as another natural pesticide ryanodine. Both perseanol and ryanodine can bind ryanodine receptors, a type of calcium channel, with high affinity. The action blocks the flow of calcium ions, disabling the contraction of muscle cells. 

Ryanodine can paralyze pets, cattle, and humans because its toxicity is non-discriminatory between mammals and insects. On the other hand, perseanol's toxicity is specific to insects, making it a safer pesticide. But to obtain a large quantity of the compound isn't a simple task. Scientists have identified a large variety of phytochemicals in Persea plant extracts, and perseanol does not appear in abundance. As the agriculture industry eagerly wishes to replace chemical pesticides with safe and naturally derived substitutes, there's alway a strong interest to chemically synthesize perseanol.  

Led by chemistry professor Sarah E. Reisman, researchers at Caltech have been working on the total synthesis of the eco-friendly pesticide. Their research playbook borrowed a chapter from a group at the University of Sherbrooke, who had successfully built a compound called ryanodol from the ground up. Ryanodol shared structural similarity with both ryanodine and perseanol. 

The Caltech team first synthesized two main parts of the perseanol molecule, one with an epoxide functional group and the other as an anion. When the two oppositely-charged pieces met, they bound to each other almost instantly, forming anhydroperseanol the precursor to the final product. Then the chemists spent eight more steps attaching side groups to complete the structure of perseanol.

It is evident that the complexity of this synthesis process makes it difficult to produce perseanol in big bulk for agricultural purposes. However, the chemists believed that their research provides some useful insights for the synthesis of similar compounds. Moreover, the amount of perseanol they obtained is sufficent for toxicological studies to better the understanding of its insecticidal effect.

This latest research is published in the journal Nature.

Total synthesis of perseanol — a natural insecticide (The Cyclo Edition)

Source: C&EN

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
OCT 06, 2020
Clinical & Molecular DX
Radioactive Tracer Shines the Floodlights on Inflammation
OCT 06, 2020
Radioactive Tracer Shines the Floodlights on Inflammation
A patient checks into the hospital with difficulty breathing. Is inflammation to blame? How can physicians visualize are ...
OCT 09, 2020
Chemistry & Physics
COVID-19 transmitted in a fractal nature
OCT 09, 2020
COVID-19 transmitted in a fractal nature
New research published under the title “Fractal signatures of the COVID-19 spread” in the journal Chaos ...
OCT 20, 2020
Chemistry & Physics
How to generate visible laser light on microchips
OCT 20, 2020
How to generate visible laser light on microchips
A new study reported in the journal Optica highlights the development of a microchip technology that can convert invisib ...
OCT 28, 2020
Chemistry & Physics
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
OCT 28, 2020
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
Scientists report using scanning electron microscopy to examine the surfaces of dinosaur egg fossils in order to determi ...
OCT 30, 2020
Chemistry & Physics
Designing tensional homeostasis in human skin equivalents
OCT 30, 2020
Designing tensional homeostasis in human skin equivalents
A new development in the production of artificial skins comes from scientists at the RIKEN Center for Biosystems Dynamic ...
DEC 22, 2020
Chemistry & Physics
Improving transmission electron microscopy at nanoscale
DEC 22, 2020
Improving transmission electron microscopy at nanoscale
New research published in the journal Matter describes the development of a new kind of microscopy – this time at ...
Loading Comments...