OCT 17, 2019 7:34 AM PDT

A Natural, Eco-friendly Pesticide Synthesized for the First Time

WRITTEN BY: Daniel Duan

A Persea Indica plant (Wikimedia Common)

A group of organic chemists at California Institute of Technology has come up with a synthesis method to produce a naturally existing pesticide named perseanol for the first time, a feat involving a 16-step chemical procedure. 

So why did they go through so much trouble to obtain a single molecule?

Perseanol is a polycyclic compound found in the evergreen tree genus PerseaPersea Americana, or avocado, is a well-known example. First discovered back in the 1990s, perseanol exerts its insecticidal effects by paralyzing the muscular tissues of pests, in the same fashion as another natural pesticide ryanodine. Both perseanol and ryanodine can bind ryanodine receptors, a type of calcium channel, with high affinity. The action blocks the flow of calcium ions, disabling the contraction of muscle cells. 

Ryanodine can paralyze pets, cattle, and humans because its toxicity is non-discriminatory between mammals and insects. On the other hand, perseanol's toxicity is specific to insects, making it a safer pesticide. But to obtain a large quantity of the compound isn't a simple task. Scientists have identified a large variety of phytochemicals in Persea plant extracts, and perseanol does not appear in abundance. As the agriculture industry eagerly wishes to replace chemical pesticides with safe and naturally derived substitutes, there's alway a strong interest to chemically synthesize perseanol.  

Led by chemistry professor Sarah E. Reisman, researchers at Caltech have been working on the total synthesis of the eco-friendly pesticide. Their research playbook borrowed a chapter from a group at the University of Sherbrooke, who had successfully built a compound called ryanodol from the ground up. Ryanodol shared structural similarity with both ryanodine and perseanol. 

The Caltech team first synthesized two main parts of the perseanol molecule, one with an epoxide functional group and the other as an anion. When the two oppositely-charged pieces met, they bound to each other almost instantly, forming anhydroperseanol the precursor to the final product. Then the chemists spent eight more steps attaching side groups to complete the structure of perseanol.

It is evident that the complexity of this synthesis process makes it difficult to produce perseanol in big bulk for agricultural purposes. However, the chemists believed that their research provides some useful insights for the synthesis of similar compounds. Moreover, the amount of perseanol they obtained is sufficent for toxicological studies to better the understanding of its insecticidal effect.

This latest research is published in the journal Nature.

Total synthesis of perseanol — a natural insecticide (The Cyclo Edition)

Source: C&EN

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
JUL 23, 2020
Cannabis Sciences
Lab Tests Show Levels of THC Can Rise in CBD Oil During Storage
JUL 23, 2020
Lab Tests Show Levels of THC Can Rise in CBD Oil During Storage
To be federally legal in all states CBD (cannabidiol) oil must contain less than 0.3 percent of the psychoactive ingredi ...
AUG 17, 2020
Chemistry & Physics
First ever documented liquid-to-liquid transition in sulfur
AUG 17, 2020
First ever documented liquid-to-liquid transition in sulfur
New research published in Nature documents evidence for a liquid-to-liquid transition in sulfur, a first-order phase tra ...
SEP 04, 2020
Microbiology
Researchers Discover a Way to Use Microbes to Help Make Plastic
SEP 04, 2020
Researchers Discover a Way to Use Microbes to Help Make Plastic
Researchers have discovered that some bacteria can make ethylene in a way we never knew about; microbes that metabolize ...
SEP 10, 2020
Chemistry & Physics
Major advance demonstrated in X-ray crystallographic sample techniques
SEP 10, 2020
Major advance demonstrated in X-ray crystallographic sample techniques
New research published in Nature Communications has corroborated a technique using a microfluidic droplet generator that ...
OCT 05, 2020
Chemistry & Physics
Improving microbial elecrosynthesis
OCT 05, 2020
Improving microbial elecrosynthesis
New research from a KAUST team highlights the development of a semiconductive photocatalyst that recycles CO2 and c ...
OCT 22, 2020
Chemistry & Physics
Improving optical fiber data transmission with silica glass made under high pressures
OCT 22, 2020
Improving optical fiber data transmission with silica glass made under high pressures
Researchers collaborating from Hokkaido University and The Pennsylvania State University show that producing silica glas ...
Loading Comments...